# D'Amore Associates, Inc.

1135 Stafford Road Tiverton, Rhode Island 02878 Email Environmental Engineering and Ground Water Consulting

Email: <u>damoreinc@gmail.com</u>

September 5, 2019

Melissa Danza Conservation Agent Town of Southborough 17 Common Street Southborough, MA 01772

Re: Breakneck Hill Conservation Area Leachate Sampling Results

Dear Ms. Danza:

This letter summarizes the results of a leachate sample collected from the downslope side of the farm dump off Breakneck Hill Road. The sample was collected on the morning of August 14, 2019 behind 48 Breakneck Hill Road in an area where an iron-stained seep was observed discharging to an ephemeral stream. The sampling locus is depicted on Figure 1.

The sample, which was analyzed for the full spectrum of contaminants; Priority Pollutant 13 metals, iron, pesticides, volatile organic compounds, PCBs, base/neutral and acid extractable compounds, polyaromatic hydrocarbons, halogenated volatile organic compounds, EPH/VPH compounds, 2,3,7,8-TCDD (indicators for dioxins and furans), was collected from a shallow depression that was created to collect leachate as it travelled toward the ephemeral stream (refer to Figure 2).

The only analytes that were detected were iron and zinc. There is no regulatory standard for iron; and zinc, which was detected at a concentration of 0.006 mg/l is below the GW-3 standard (0.9 mg/l). The sampling results for all of the parameters that were analyzed are included in Table 1. The laboratory report is included as Attachment 1.

Please do not hesitate to contact me with any questions that you may have.

Sincerely,

D'Amore Associates, Inc.

Denis D'Amore, Ph.D., P.E. Licensed Site Professional

Figures, Table and Laboratory Report

### Google Maps 48 Breakneck Hill Rd



Imagery ©2019 Google, Imagery ©2019 MassGIS, Commonwealth of Massachusetts EOEA, Maxar Technologies, Map data ©2019 100 ft 📖



# Table 1Leachate Sampling Results, August 14, 2019Breakneck Hill Conservation Area

| Lab Sample Id                         |                    | CD86207       |  |  |  |  |
|---------------------------------------|--------------------|---------------|--|--|--|--|
| Collection Date                       | GW-3               | 8/14/2019     |  |  |  |  |
| Client Id                             | Standard           | BHCA          |  |  |  |  |
| Matrix                                |                    | Surface Water |  |  |  |  |
| Metals, Dissolved (mg/l)              |                    |               |  |  |  |  |
| Antimony (Dissolved)                  | 8                  | < 0.005       |  |  |  |  |
| Arsenic (Dissolved)                   | 0.9                | < 0.004       |  |  |  |  |
| Beryllium (Dissolved)                 | 0.2                | < 0.001       |  |  |  |  |
| Cadmium (Dissolved)                   | 0.004              | < 0.001       |  |  |  |  |
| Chromium (Dissolved)                  | 0.3                | < 0.001       |  |  |  |  |
| Copper (Dissolved)                    |                    | < 0.005       |  |  |  |  |
| Thallium (Dissolved)                  | 3                  | < 0.0003      |  |  |  |  |
| Iron (Dissolved)                      |                    | 1.43          |  |  |  |  |
| Lead (Dissolved)                      | 0.01               | < 0.002       |  |  |  |  |
| Mercury (Dissolved)                   | 0.02               | < 0.0002      |  |  |  |  |
| Nickel (Dissolved)                    | 0.2                | < 0.001       |  |  |  |  |
| Selenium (Dissolved)                  | 0.1                | < 0.011       |  |  |  |  |
| Silver (Dissolved)                    | 0.007              | < 0.001       |  |  |  |  |
| Zinc (Dissolved)                      | 0.9                | 0.006         |  |  |  |  |
| TPH By MA VPH 5/2004 (ug/l)           |                    |               |  |  |  |  |
| C5-C8 Aliphatic Hydrocarbons *1,2     | 50,000             | < 100         |  |  |  |  |
| C9-C10 Aromatic Hydrocarbons *1       | 50,000             | < 100         |  |  |  |  |
| C9-C12 Aliphatic Hydrocarbons *1,3    | 50,000             | < 100         |  |  |  |  |
| Benzene                               | 10,000             | < 1.0         |  |  |  |  |
| Ethyl Benzene                         | 5,000              | < 1.0         |  |  |  |  |
| МТВЕ                                  | 50,000             | < 1.0         |  |  |  |  |
| Naphthalene                           | 20,000             | < 5.0         |  |  |  |  |
| Toluene                               | 40,000             | < 1.0         |  |  |  |  |
| m,p-Xylenes                           |                    | < 2.0         |  |  |  |  |
| o-Xylene                              |                    | < 1.0         |  |  |  |  |
| MA EPH Aliphatic/Aromatic Ranges By M | AEPH 5/2004 (ug/l) |               |  |  |  |  |
| C11-C22 Aromatic Hydrocarbons 1,2*    | 5,000              | < 190         |  |  |  |  |
| C19-C36 Aliphatic Hydrocarbons 1*     | 50,000             | < 190         |  |  |  |  |
| C9-C18 Aliphatic Hydrocarbons 1*      | 50,000             | < 190         |  |  |  |  |
| PCBs By SW8082A (ug/l)                |                    |               |  |  |  |  |
| PCB-1016                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1221                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1232                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1242                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1248                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1254                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1260                              | 10                 | < 0.095       |  |  |  |  |
| PCB-1262                              |                    | < 0.095       |  |  |  |  |

| PCB-1268                                              |        | < 0.095         |
|-------------------------------------------------------|--------|-----------------|
| Volatiles By SW8260C (ug/l)                           | 1      |                 |
| 1,1,1,2-Tetrachloroethane                             | 50,000 | < 1.0           |
| 1,1,1-Trichloroethane                                 | 20,000 | < 1.0           |
| 1,1,2,2-Tetrachloroethane                             | 50,000 | < 0.50          |
| 1,1,2-Trichloroethane                                 | 50,000 | < 1.0           |
| 1,1-Dichloroethane                                    | 20,000 | < 1.0           |
| 1,1-Dichloroethene                                    | 30,000 | < 1.0           |
| 1,1-Dichloropropene                                   | 30,000 | < 1.0           |
| 1,2,3-Trichlorobenzene                                |        | < 1.0           |
| 1,2,3-Trichloropropane                                |        | < 1.0           |
| 1,2,4-Trichlorobenzene                                | 50,000 | < 1.0           |
|                                                       | 30,000 | < 1.0           |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane |        | < 1.0           |
|                                                       | E0.000 |                 |
| 1,2-Dibromoethane                                     | 50,000 | < 1.0           |
| 1,2-Dichlorobenzene                                   | 2,000  | < 1.0<br>< 0.60 |
| 1,2-Dichloroethane                                    | 20,000 |                 |
| 1,2-Dichloropropane                                   | 50,000 | < 1.0           |
| 1,3,5-Trimethylbenzene                                | 50.000 | < 1.0           |
| 1,3-Dichlorobenzene                                   | 50,000 | < 1.0           |
| 1,3-Dichloropropane                                   | 0.000  | < 1.0           |
| 1,4-Dichlorobenzene                                   | 8,000  | < 1.0           |
| 2,2-Dichloropropane                                   |        | < 1.0           |
| 2-Chlorotoluene                                       |        | < 1.0           |
| 2-Hexanone                                            |        | < 5.0           |
| 2-Isopropyltoluene                                    |        | < 1.0           |
| 4-Chlorotoluene                                       |        | < 1.0           |
| 4-Methyl-2-pentanone                                  | 50,000 | < 5.0           |
| Acetone                                               | 50,000 | < 25            |
| Acrylonitrile                                         |        | < 1.0           |
| Benzene                                               | 10,000 | < 0.70          |
| Bromobenzene                                          |        | < 1.0           |
| Bromochloromethane                                    |        | < 1.0           |
| Bromodichloromethane                                  | 50,000 | < 0.50          |
| Bromoform                                             | 50,000 | < 1.0           |
| Bromomethane                                          | 800    | < 1.0           |
| Carbon Disulfide                                      |        | < 5.0           |
| Carbon tetrachloride                                  | 5,000  | < 1.0           |
| Chlorobenzene                                         | 1,000  | < 1.0           |
| Chloroethane                                          | ļ ļ    | < 1.0           |
| Chloroform                                            | 20,000 | < 1.0           |
| Chloromethane                                         |        | < 1.0           |
| cis-1,2-Dichloroethene                                | 50,000 | < 1.0           |
| cis-1,3-Dichloropropene                               |        | < 0.40          |
| Dibromochloromethane                                  | 50,000 | < 0.50          |
| Dibromomethane                                        |        | < 1.0           |
| Dichlorodifluoromethane                               |        | < 1.0           |

| <b>-</b>                             |        | 4.0     |
|--------------------------------------|--------|---------|
| Ethylbenzene                         | 5,000  | < 1.0   |
| Hexachlorobutadiene                  | 3,000  | < 0.40  |
| Isopropylbenzene                     |        | < 1.0   |
| m&p-Xylene                           |        | < 1.0   |
| Methyl ethyl ketone                  | 50,000 | < 5.0   |
| Methyl t-butyl ether (MTBE)          | 50,000 | < 1.0   |
| Methylene chloride                   | 50,000 | < 1.0   |
| Naphthalene                          | 20,000 | < 1.0   |
| n-Butylbenzene                       |        | < 1.0   |
| n-Propylbenzene                      |        | < 1.0   |
| o-Xylene                             |        | < 1.0   |
| p-IsopropyItoluene                   |        | < 1.0   |
| sec-Butylbenzene                     |        | < 1.0   |
| Styrene                              | 6,000  | < 1.0   |
| tert-Butylbenzene                    |        | < 1.0   |
| Tetrachloroethene                    | 30,000 | < 1.0   |
| Tetrahydrofuran (THF)                |        | < 2.5   |
| Toluene                              | 40,000 | < 1.0   |
| Total Xylenes                        | 5,000  | < 1.0   |
| trans-1,2-Dichloroethene             | 50,000 | < 1.0   |
| trans-1,3-Dichloropropene            |        | < 0.40  |
| trans-1,4-dichloro-2-butene          |        | < 5.0   |
| Trichloroethene                      | 5,000  | < 1.0   |
| Trichlorofluoromethane               |        | < 1.0   |
| Trichlorotrifluoroethane             |        | < 1.0   |
| Vinyl chloride                       | 50,000 | < 1.0   |
| Semivolatiles by SIM, PAH By SW8270D |        |         |
| 2-Methylnaphthalene                  | 20,000 | < 0.49  |
| Acenaphthene                         | 10,000 | < 0.49  |
| Acenaphthylene                       | 40     | < 0.10  |
| Anthracene                           | 30     | < 0.09  |
| Benz(a)anthracene                    | 1,000  | < 0.10  |
| Benzo(a)pyrene                       | 500    | < 0.20  |
| Benzo(b)fluoranthene                 | 400    | < 0.10  |
| Benzo(ghi)perylene                   | 20     | < 0.02  |
| Benzo(k)fluoranthene                 | 100    | < 0.10  |
| Chrysene                             | 70     | < 0.05  |
| Dibenz(a,h)anthracene                | 40     | < 0.03  |
| Fluoranthene                         | 200    | < 0.49  |
| Fluorantnene                         | 40     | < 0.49  |
|                                      |        |         |
| Indeno(1,2,3-cd)pyrene               | 100    | < 0.10  |
| Naphthalene                          | 20,000 | < 0.49  |
| Phenanthrene                         | 10,000 | < 0.49  |
| Pyrene                               | 20     | < 0.07  |
| Pesticides By SW8081B (ug/l)         |        |         |
| 4,4' -DDD                            | 50     | < 0.048 |
| 4,4' -DDE                            | 400    | < 0.048 |

| 4,4' -DDT                          | 1          | < 0.048 |
|------------------------------------|------------|---------|
| a-BHC                              |            | < 0.024 |
| Alachlor                           |            | < 0.071 |
| Aldrin                             | 30         | < 0.001 |
| b-BHC                              |            | < 0.005 |
| Chlordane                          | 2          | < 0.019 |
| d-BHC                              |            | < 0.024 |
| Dieldrin                           | 0.5        | < 0.050 |
| Endosulfan I                       |            | < 0.048 |
| Endosulfan II                      |            | < 0.048 |
| Endosulfan Sulfate                 |            | < 0.048 |
| Endrin                             | 5          | < 0.048 |
| Endrin Aldehyde                    |            | < 0.048 |
| Endrin ketone                      |            | < 0.048 |
| g-BHC (Lindane)                    | 4          | < 0.024 |
| Heptachlor                         | 1          | < 0.024 |
| Heptachlor epoxide                 | 2          | < 0.024 |
| Hexachlorobenzene                  | 6,000      | < 0.005 |
| Methoxychlor                       | 10         | < 0.095 |
| Toxaphene                          |            | < 0.95  |
| Oxygenates & Dioxane By SW8260C (O | XY) (ug/l) |         |
| 1,4-Dioxane                        | 50,000     | < 100   |
| Diethyl ether                      |            | < 1.0   |
| Di-isopropyl ether                 |            | < 1.0   |
| Ethyl tert-butyl ether             |            | < 1.0   |
| tert-amyl methyl ether             |            | < 1.0   |

Result Detected

RL Exceeds Criteria

Result Exceeds Criteria

Attachment 1

Laboratory Report



Wednesday, September 04, 2019

Attn: Mr. Denis D'Amore D'Amore Associates 1135 Stafford Road Tiverton, RI 02878

Project ID: SOUTHBORO CON COM SDG ID: GCD86207 Sample ID#s: CD86207 - CD86208

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301







September 04, 2019

SDG I.D.: GCD86207

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.



# Sample Id Cross Reference

September 04, 2019

SDG I.D.: GCD86207

#### Project ID: SOUTHBORO CON COM

| Client Id  | Lab Id  | Matrix        |
|------------|---------|---------------|
| BHCA       | CD86207 | SURFACE WATER |
| TRIP BLANK | CD86208 | SURFACE WATER |



# Analysis Report

September 04, 2019

FOR: Attn: Mr. Denis D'Amore D'Amore Associates 1135 Stafford Road Tiverton, RI 02878

#### Sample Information

Matrix:SURFACE WATERLocation Code:DAMORERush Request:72 HourP.O.#:Contemport

| Collected by: |   |
|---------------|---|
| Received by:  | S |
| Analyzed by:  | S |

**Custody Information** 

SW see "By" below 08/14/1910:3008/15/1917:56

Date

Time

# Laboratory Data

SDG ID: GCD86207 Phoenix ID: CD86207

### Project ID: SOUTHBORO CON COM

BHCA

Client ID:

| _                              |             | RL/    |       |          |           | _     | - /           |   |
|--------------------------------|-------------|--------|-------|----------|-----------|-------|---------------|---|
| Parameter                      | Result      | PQL    | Units | Dilution | Date/Time | By    | Reference     |   |
| Silver (Dissolved)             | < 0.001     | 0.001  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Arsenic (Dissolved)            | < 0.004     | 0.004  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Beryllium (Dissolved)          | < 0.001     | 0.001  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Cadmium (Dissolved)            | < 0.001     | 0.001  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Chromium (Dissolved)           | < 0.001     | 0.001  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Copper (Dissolved)             | < 0.005     | 0.005  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Iron (Dissolved)               | 1.43        | 0.011  | mg/L  | 1        | 08/16/19  | TH    | E200.7        |   |
| Mercury (Dissolved)            | < 0.0002    | 0.0002 | mg/L  | 1        | 08/20/19  | RS    | SW7470A       |   |
| Nickel (Dissolved)             | < 0.001     | 0.001  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Lead (Dissolved)               | < 0.002     | 0.002  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Antimony (Dissolved)           | < 0.005     | 0.005  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Selenium (Dissolved)           | < 0.011     | 0.011  | mg/L  | 1        | 08/16/19  | TH    | E200.7-4.4    |   |
| Thallium (Dissolved)           | < 0.0003    | 0.0003 | mg/L  | 1        | 08/22/19  | CPP   | SW6020B       |   |
| Zinc (Dissolved)               | 0.006       | 0.002  | mg/L  | 1        | 08/16/19  | TH    | SW6010D       |   |
| Filtration                     | Completed   |        |       |          | 08/15/19  | AG    | 0.45um Filter |   |
| Dissolved Mercury Digestion    | Completed   |        |       |          | 08/19/19  | LS/I  | SW7470A       |   |
| EPH Extraction                 | Completed   |        |       |          | 08/16/19  | JS/VT | SW3510C       |   |
| MA Petroleum Hydrocarbon (EPH) | Completed   |        |       |          | 08/15/19  |       | MADEP EPH-04  |   |
| PCB Extraction                 | Completed   |        |       |          | 08/15/19  | Ν     | SW3510C       |   |
| Extraction for Pest (2 Liter)  | Completed   |        |       |          | 08/15/19  | Ν     | SW3510C       |   |
| Semi-Volatile Extraction       | Completed   |        |       |          | 08/16/19  | P/D   | SW3520C       |   |
| Dissolved Metals Preparation   | Completed   |        |       |          | 08/15/19  | AG    | SW3005A       |   |
| Dissolved Metals Preparation   | Completed   |        |       |          | 08/19/19  | AG    | SW3005A       |   |
| MA Petroleum Hydrocarbon (VPH) | Completed   |        |       |          | 08/16/19  | RM    | MADEP VPH04   |   |
| Dioxin                         | Completed   | 1.0    | pg/L  |          | 08/24/19  | *     | E1613B        | С |
| Polychlorinated Biphen         | <u>iyls</u> |        |       |          |           |       |               |   |
| PCB-1016                       | ND          | 0.095  | ug/L  | 1        | 08/16/19  | SC    | SW8082A       |   |

| PCB-1232PPCB-1242PPCB-1248PPCB-1254PPCB-1260PPCB-1262PPCB-1268PQA/QC Surrogates% DCBPP% DCBP (Confirmation)P% TCMXP% TCMX (Confirmation)P% TCMX (Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    | 0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.011<br>0.001<br>0.001<br>0.005<br>0.019<br>0.024<br>0.024 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19 | SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW | SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCB-1242NPCB-1248NPCB-1254NPCB-1260NPCB-1262NPCB-1268NQA/QC SurrogatesN% DCBPN% DCBP (Confirmation)N% TCMXN% TCMX (Confirmation)N% TCMX (Confirmation)N4,4' -DDDN4,4' -DDTN4,4' -DDTN4,4' -DDTNAlachlorNAldrinNb-BHCNChlordaneNd-BHCNDieldrinNEndosulfan INEndosulfan SulfateNEndrin AldehydeNEndrin ketoneNg-BHC (Lindane)NHeptachlor epoxideNHexachlorobenzeneN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                    | 0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.048<br>0.048<br>0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.024                   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>%<br>%<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                 | SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW             | SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                |
| PCB-1248MPCB-1254PPCB-1260PPCB-1262PPCB-1268PQA/QC Surrogates% DCBPP% DCBP (Confirmation)P% TCMXP% TCMX (Confirmation)P% AdditionP% DDDP% AdditionP% DDDP% AdditionP% DDCP% DDCP% DDCP% DDCP% DDCP% DDCP% DDCP% DDCP% DDCP<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1                    | 0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.048<br>0.048<br>0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                              | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>%<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                             | SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW                   | SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                         |
| PCB-1254<br>PCB-1260<br>PCB-1262<br>PCB-1262<br>PCB-1268<br><b>QA/QC Surrogates</b><br>% DCBP<br>% DCBP (Confirmation)<br>% TCMX<br>% TCMX (Confirmation)<br>% TCMX (Co | 1D<br>1D<br>1D<br>59<br>77<br>77<br>30<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D | 0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.048<br>0.048<br>0.048<br>0.024<br>0.071<br>0.024<br>0.071<br>0.005<br>0.019<br>0.024<br>0.050                                                       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>%<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                         | SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                   | SW8082A<br>SW8082A<br>SW8082A<br>SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                    |
| PCB-1260       M         PCB-1262       M         PCB-1268       M         QA/QC Surrogates       M         % DCBP       M         % DCBP (Confirmation)       M         % TCMX       M         % TCMX (Confirmation)       M         % TCMX (Confirmation)       M         % TCMX (Confirmation)       M         Pesticides       M         4,4' -DDD       M         4,4' -DDT       M         a-BHC       M         Alachlor       M         Aldrin       M         b-BHC       M         Chlordane       M         d-BHC       M         Dieldrin       M         Endosulfan I       M         Endosulfan Sulfate       M         Endrin Aldehyde       M         Endrin ketone       M         g-BHC (Lindane)       M         Heptachlor       M         Heptachlor epoxide       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1D<br>1D<br>1D<br>59<br>77<br>77<br>30<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D | 0.095<br>0.095<br>0.095<br>0.095<br>0.048<br>0.048<br>0.048<br>0.024<br>0.071<br>0.024<br>0.071<br>0.005<br>0.019<br>0.024<br>0.024                                                                                           | ug/L<br>ug/L<br>wg/L<br>%<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                     | SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW                         | SW8082A<br>SW8082A<br>SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                            |
| PCB-1262       M         PCB-1268       M         QA/QC Surrogates       M         % DCBP       M         % DCBP (Confirmation)       M         % TCMX       M         % TCMX (Confirmation)       M         #4,4' -DDD       M         4,4' -DDT       M         a-BHC       M         Aldrin       M         b-BHC       M         Chlordane       M         d-BHC       M         Dieldrin       M         Endosulfan II       M         Endrin Aldehyde       M         Endrin Aldehyde       M         Endrin ketone       M         g-BHC (Lindane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1D<br>1D<br>59<br>77<br>30<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D             | 0.095<br>0.095<br>0.048<br>0.048<br>0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                      | ug/L<br>ug/L<br>%<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                          | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                 | SC<br>SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                               | SW8082A<br>SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                            |
| PCB-1268       M         QA/QC Surrogates       %         % DCBP       %         % DCBP (Confirmation)       %         % TCMX       %         % TCMX (Confirmation)       %         % TCMX (Confirmation)       %         % TCMX (Confirmation)       %         Pesticides       %         4,4' -DDD       M         4,4' -DDT       M         a-BHC       M         Alachlor       M         Aldrin       M         b-BHC       M         Chlordane       M         d-BHC       M         Dieldrin       M         Endosulfan I       M         Endosulfan Sulfate       M         Endrin Aldehyde       M         Endrin Aldehyde       M         Endrin Aldehyde       M         Heptachlor       M         Heptachlor       M         Heptachlor epoxide       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>69<br>77<br>73<br>77<br>80<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND             | 0.095<br>0.048<br>0.048<br>0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                               | ug/L<br>%<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                             | SC<br>SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                                     | SW8082A<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                       |
| QA/QC Surrogates         % DCBP         % DCBP (Confirmation)         % TCMX         % TCMX (Confirmation)         % TCMX (Confirmation)         % TCMX (Confirmation)         #4,4' -DDD         4,4' -DDT         a-BHC         Alachlor         Aldrin         b-BHC         Chlordane         d-BHC         Dieldrin         Endosulfan I         Endosulfan Sulfate         Endrin Aldehyde         Endrin ketone         g-BHC (Lindane)         Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59<br>77<br>30<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                     | 0.048<br>0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                 | %<br>%<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 08/16/19<br>08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                         | SC<br>SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                                           | 30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                             |
| % DCBP       %         % DCBP (Confirmation)       %         % TCMX       %         % TCMX (Confirmation)       %         % TCMX (Confirmation)       %         Pesticides       %         4,4' -DDD       %         4,4' -DDT       %         a,4' -DDT       %         a,4' -DDT       %         a,4' -DDT       %         Alachlor       %         Alachlor       %         Aldrin       %         b-BHC       %         Chlordane       %         d-BHC       %         Dieldrin       %         Endosulfan I       %         Endosulfan Sulfate       %         Endrin Aldehyde       %         Endrin Aldehyde       %         PBHC (Lindane)       %         Heptachlor       %         Heptachlor epoxide       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77<br>77<br>30<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                     | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | %<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                     | SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                                                 | 30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                           |
| % DCBP (Confirmation)       *         % TCMX       *         % TCMX (Confirmation)       *         % TCMX (Confirmation)       *         % TCMX (Confirmation)       *         Pesticides       *         4,4' -DDD       *         4,4' -DDT       *         a-BHC       *         Alachlor       *         Aldrin       *         b-BHC       *         Chlordane       *         d-BHC       *         Dieldrin       *         Endosulfan I       *         Endosulfan Sulfate       *         Endrin Aldehyde       *         Endrin Aldehyde       *         Heptachlor       *         Heptachlor epoxide       *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77<br>77<br>30<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                     | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | %<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                         | 08/16/19<br>08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                     | SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                                                 | 30 - 150 %<br>30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                           |
| % TCMX       %         % TCMX (Confirmation)       %         4,4' -DDD       %         4,4' -DDT       %         a-BHC       %         Alachlor       %         Aldrin       %         b-BHC       %         Chlordane       %         d-BHC       %         Dieldrin       %         Endosulfan I       %         Endosulfan Sulfate       %         Endrin       %         Endrin Aldehyde       %         Endrin ketone       %         g-BHC (Lindane)       %         Heptachlor       %         Heptachlor epoxide       %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77<br>30<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D                                           | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | %<br>%<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                           | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                              | 08/16/19<br>08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                 | SC<br>SC<br>AW<br>AW<br>AW<br>AW<br>AW<br>AW                                                 | 30 - 150 %<br>30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                         |
| % TCMX (Confirmation)       #         % TCMX (Confirmation)       #         4,4' -DDD       #         4,4' -DDE       #         4,4' -DDT       #         a-BHC       #         Alachlor       #         Alachlor       #         Alachlor       #         Alachlor       #         Alachlor       #         Aldrin       #         Do-BHC       #         Chlordane       #         d-BHC       #         Dieldrin       #         Endosulfan I       #         Endosulfan II       #         Endrin       #         Endrin Aldehyde       #         Endrin ketone       #         g-BHC (Lindane)       #         Heptachlor       #         Heptachlor epoxide       #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D<br>1D                                                       | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | %<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 08/16/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                             | SC<br>AW<br>AW<br>AW<br>AW<br>AW                                                             | 30 - 150 %<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                       |
| Pesticides         4,4' -DDD         4,4' -DDE         4,4' -DDT         a-BHC         Alachlor         Alachlor         Alachlor         Alachlor         Chlordane         d-BHC         Dieldrin         Endosulfan I         Endosulfan Sulfate         Endrin         Endrin Aldehyde         Endrin ketone         g-BHC (Lindane)         Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                       | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                             | 1<br>1<br>1<br>1<br>1<br>1<br>1                                                             | 08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                             | AW<br>AW<br>AW<br>AW<br>AW                                                                   | SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                                     |
| 4,4' -DDD       1         4,4' -DDE       1         4,4' -DDT       1         a-BHC       1         Alachlor       1         Alachlor       1         Aldrin       1         b-BHC       1         Chlordane       1         d-BHC       1         Dieldrin       1         Endosulfan I       1         Endosulfan Sulfate       1         Endrin Aldehyde       1         Endrin ketone       1         g-BHC (Lindane)       1         Heptachlor       1         Heptachlor epoxide       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                    | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                     | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                                         | AW<br>AW<br>AW<br>AW<br>AW                                                                   | SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                                                |
| 4,4' -DDE       1         4,4' -DDT       1         a-BHC       1         Alachlor       1         Aldrin       1         b-BHC       1         Chlordane       1         d-BHC       1         Dieldrin       1         Endosulfan I       1         Endosulfan Sulfate       1         Endrin       1         Endrin Aldehyde       1         Endrin ketone       1         g-BHC (Lindane)       1         Heptachlor epoxide       1         Hexachlorobenzene       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                    | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                     | 1<br>1<br>1<br>1<br>1<br>1                                                                  | 08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                                         | AW<br>AW<br>AW<br>AW<br>AW                                                                   | SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                                                |
| 4,4' -DDT     N       a-BHC     N       Alachlor     N       Alachlor     N       Aldrin     N       b-BHC     N       chlordane     N       d-BHC     N       Dieldrin     N       Endosulfan I     N       Endosulfan Sulfate     N       Endrin     N       Endrin ketone     N       g-BHC (Lindane)     N       Heptachlor     N       Heptachlor epoxide     N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>10<br>10<br>10<br>10                                                                         | 0.048<br>0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                          | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                             | 1<br>1<br>1<br>1<br>1                                                                       | 08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                                                     | AW<br>AW<br>AW<br>AW                                                                         | SW8081B<br>SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                                                           |
| a-BHC Alachlor Aldrin Aldrighte Algorithm Algorithm Aldrighte Algorithm Aldrighte Algorithm Algor                                                                                                                                                                                                                                                                                                         | 10<br>10<br>10<br>10<br>10<br>10                                                                   | 0.024<br>0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                                   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                     | 1<br>1<br>1<br>1                                                                            | 08/17/19<br>08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                                                                 | AW<br>AW<br>AW<br>AW                                                                         | SW8081B<br>SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                                                                      |
| Alachlor     Market       Aldrin     Market       Aldrin     Market       b-BHC     Market       Chlordane     Market       d-BHC     Market       Dieldrin     Market       Endosulfan I     Market       Endosulfan Sulfate     Market       Endrin     Market       Endrin Aldehyde     Market       Endrin ketone     Market       g-BHC (Lindane)     Market       Heptachlor     Market       Heptachlor epoxide     Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>10<br>10<br>10<br>10                                                                         | 0.071<br>0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                                            | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                     | 1<br>1<br>1<br>1                                                                            | 08/17/19<br>08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                                                                             | AW<br>AW<br>AW                                                                               | SW8081B<br>SW8081B<br>SW8081B                                                                                                                                                                                                                                 |
| Aldrin     Main       b-BHC     Main       Chlordane     Main       d-BHC     Main       Dieldrin     Main       Endosulfan I     Main       Endosulfan Sulfate     Main       Endrin     Main       Endrin Aldehyde     Main       Endrin ketone     Main       g-BHC (Lindane)     Main       Heptachlor     Main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1D<br>1D<br>1D<br>1D                                                                               | 0.001<br>0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                                                     | ug/L<br>ug/L<br>ug/L<br>ug/L                                                                                             | 1<br>1<br>1                                                                                 | 08/17/19<br>08/17/19<br>08/17/19                                                                                                                                                                                                                         | AW<br>AW                                                                                     | SW8081B<br>SW8081B                                                                                                                                                                                                                                            |
| D-BHC M<br>Chlordane M<br>d-BHC M<br>Dieldrin Endosulfan I M<br>Endosulfan II M<br>Endosulfan Sulfate M<br>Endrin Aldehyde M<br>Endrin Aldehyde M<br>Endrin ketone M<br>g-BHC (Lindane) M<br>Heptachlor M<br>Heptachlor Poxide M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1D<br>1D<br>1D                                                                                     | 0.005<br>0.019<br>0.024<br>0.050                                                                                                                                                                                              | ug/L<br>ug/L<br>ug/L                                                                                                     | 1<br>1                                                                                      | 08/17/19<br>08/17/19                                                                                                                                                                                                                                     | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Chlordane Chlord                                                                                                                                                                                                                                                                                                         | 1D<br>1D                                                                                           | 0.019<br>0.024<br>0.050                                                                                                                                                                                                       | ug/L<br>ug/L                                                                                                             | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                               |
| d-BHC M<br>Dieldrin M<br>Endosulfan I M<br>Endosulfan II M<br>Endosulfan Sulfate M<br>Endrin Aldehyde M<br>Endrin ketone M<br>g-BHC (Lindane) M<br>Heptachlor epoxide M<br>Hexachlorobenzene M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND<br>ND                                                                                           | 0.024<br>0.050                                                                                                                                                                                                                | ug/L                                                                                                                     |                                                                                             |                                                                                                                                                                                                                                                          | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Dieldrin P<br>Endosulfan I P<br>Endosulfan II P<br>Endosulfan Sulfate P<br>Endrin Aldehyde P<br>Endrin ketone P<br>g-BHC (Lindane) P<br>Heptachlor Poxide P<br>Hexachlorobenzene P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ١D                                                                                                 | 0.050                                                                                                                                                                                                                         | -                                                                                                                        | 1                                                                                           | 09/17/10                                                                                                                                                                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                               |
| Endosulfan I F<br>Endosulfan II F<br>Endosulfan Sulfate F<br>Endrin Sulfate F<br>Endrin Aldehyde F<br>Endrin ketone F<br>g-BHC (Lindane) F<br>Heptachlor F<br>Heptachlor epoxide F<br>Hexachlorobenzene F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                                                                                                                                                                                               | ua/L                                                                                                                     |                                                                                             | 00/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Endosulfan II Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin ketone Sp-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Endrin Ketone Structure Stru                                                                                                                                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                                                                                               | ~ <del>.</del>                                                                                                           | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Endosulfan Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ١D                                                                                                 | 0.048                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Endrin M<br>Endrin Aldehyde M<br>Endrin ketone M<br>g-BHC (Lindane) M<br>Heptachlor M<br>Heptachlor epoxide M<br>Hexachlorobenzene M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ١D                                                                                                 | 0.048                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Endrin Aldehyde M<br>Endrin ketone M<br>g-BHC (Lindane) M<br>Heptachlor M<br>Heptachlor epoxide M<br>Hexachlorobenzene M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ١D                                                                                                 | 0.048                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Endrin ketone M<br>g-BHC (Lindane) M<br>Heptachlor M<br>Heptachlor epoxide M<br>Hexachlorobenzene M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ١D                                                                                                 | 0.048                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| g-BHC (Lindane) M<br>Heptachlor M<br>Heptachlor epoxide M<br>Hexachlorobenzene M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ١D                                                                                                 | 0.048                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Heptachlor Meptachlor Meptachlor Meptachlor Meptachlor Meptachlor Methods Meth                                                                                                                                                                                                                                                                                                         | ١D                                                                                                 | 0.048                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Heptachlor epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ١D                                                                                                 | 0.024                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١D                                                                                                 | 0.024                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١D                                                                                                 | 0.024                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ١D                                                                                                 | 0.005                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| Methoxychlor N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ١D                                                                                                 | 0.095                                                                                                                                                                                                                         | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ١D                                                                                                 | 0.95                                                                                                                                                                                                                          | ug/L                                                                                                                     | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | SW8081B                                                                                                                                                                                                                                                       |
| QA/QC Surrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                               | -                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98                                                                                                 |                                                                                                                                                                                                                               | %                                                                                                                        | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | 30 - 150 %                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40                                                                                                 |                                                                                                                                                                                                                               | %                                                                                                                        | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | 30 - 150 %                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72                                                                                                 |                                                                                                                                                                                                                               | %                                                                                                                        | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | 30 - 150 %                                                                                                                                                                                                                                                    |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58                                                                                                 |                                                                                                                                                                                                                               | %                                                                                                                        | 1                                                                                           | 08/17/19                                                                                                                                                                                                                                                 | AW                                                                                           | 30 - 150 %                                                                                                                                                                                                                                                    |
| <u>Volatiles</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                                                                                                                                                                               |                                                                                                                          |                                                                                             |                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ١D                                                                                                 | 1.0                                                                                                                                                                                                                           | ug/L                                                                                                                     | 1                                                                                           | 08/18/19                                                                                                                                                                                                                                                 | MH                                                                                           | SW8260C                                                                                                                                                                                                                                                       |
| , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ١D                                                                                                 | 1.0                                                                                                                                                                                                                           | ug/L                                                                                                                     | 1                                                                                           | 08/18/19                                                                                                                                                                                                                                                 | МН                                                                                           | SW8260C                                                                                                                                                                                                                                                       |
| .,.,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ١D                                                                                                 | 0.50                                                                                                                                                                                                                          | ug/L                                                                                                                     | 1                                                                                           | 08/18/19                                                                                                                                                                                                                                                 | МН                                                                                           | SW8260C                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ١D                                                                                                 | 1.0                                                                                                                                                                                                                           | ug/L                                                                                                                     | 1                                                                                           | 08/18/19                                                                                                                                                                                                                                                 | MH                                                                                           | SW8260C                                                                                                                                                                                                                                                       |
| .,.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | 1.0                                                                                                                                                                                                                           | ug/L                                                                                                                     | 1                                                                                           | 08/18/19                                                                                                                                                                                                                                                 | MH                                                                                           | SW8260C                                                                                                                                                                                                                                                       |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ١D                                                                                                 | 1.0                                                                                                                                                                                                                           | ug/L                                                                                                                     | 1                                                                                           | 08/18/19                                                                                                                                                                                                                                                 | MH                                                                                           | SW8260C                                                                                                                                                                                                                                                       |

| Parameter                   | Result | RL/<br>PQL | Units | Dilution | Date/Time | By | Reference |
|-----------------------------|--------|------------|-------|----------|-----------|----|-----------|
| 1,1-Dichloropropene         | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| 1,2,3-Trichlorobenzene      | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2,3-Trichloropropane       | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2,4-Trichlorobenzene       | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2,4-Trimethylbenzene       | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2-Dibromo-3-chloropropane  | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2-Dibromoethane            | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2-Dichlorobenzene          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2-Dichloroethane           | ND     | 0.60       | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2-Dichloropropane          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,3,5-Trimethylbenzene       | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,3-Dichlorobenzene          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,3-Dichloropropane          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,4-Dichlorobenzene          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ,2-Dichloropropane          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| -Chlorotoluene              | ND     | 1.0        | ug/L  | 1        | 08/18/19  | ΜΗ | SW8260C   |
| -Hexanone                   | ND     | 5.0        | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| -Isopropyltoluene           | ND     | 1.0        | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| -Chlorotoluene              | ND     | 1.0        | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| -Methyl-2-pentanone         | ND     | 5.0        | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| cetone                      | ND     | 25         | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| crylonitrile                | ND     | 1.0        | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| enzene                      | ND     | 0.70       | ug/L  | 1        | 08/18/19  | МН | SW8260C   |
| romobenzene                 | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| romochloromethane           | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| romodichloromethane         | ND     | 0.50       | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| romoform                    | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| romomethane                 | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| arbon Disulfide             | ND     | 5.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| Carbon tetrachloride        | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| Chlorobenzene               | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| hloroethane                 | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| Chloroform                  | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| Chloromethane               | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| is-1,2-Dichloroethene       | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| is-1,2-Dichloropropene      | ND     | 0.40       | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ibromochloromethane         | ND     | 0.40       | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ibromomethane               | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
|                             | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| ichlorodifluoromethane      | ND     | 1.0        |       |          | 08/18/19  | MH | SW8260C   |
| thylbenzene                 |        |            | ug/L  | 1        |           |    | SW8260C   |
| exachlorobutadiene          | ND     | 0.40       | ug/L  | 1        | 08/18/19  | MH |           |
|                             | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| 1&p-Xylene                  | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| lethyl ethyl ketone         | ND     | 5.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| lethyl t-butyl ether (MTBE) | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| lethylene chloride          | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| laphthalene                 | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| -Butylbenzene               | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |
| -Propylbenzene              | ND     | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C   |

| Parameter                  | Result   | RL/<br>PQL | Units | Dilution | Date/Time | Ву | Reference     |
|----------------------------|----------|------------|-------|----------|-----------|----|---------------|
| o-Xylene                   | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| p-lsopropyltoluene         | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| sec-Butylbenzene           | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| Styrene                    | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| ert-Butylbenzene           | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| Tetrachloroethene          | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| Tetrahydrofuran (THF)      | ND       | 2.5        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| Foluene                    | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| Total Xylenes              | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| rans-1,2-Dichloroethene    | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| rans-1,3-Dichloropropene   | ND       | 0.40       | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| rans-1,4-dichloro-2-butene | ND       | 5.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| richloroethene             | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| Frichlorofluoromethane     | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| richlorotrifluoroethane    | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| /inyl chloride             | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C       |
| QA/QC Surrogates           |          |            |       |          |           |    |               |
| % 1,2-dichlorobenzene-d4   | 96       |            | %     | 1        | 08/18/19  | MH | 70 - 130 %    |
| % Bromofluorobenzene       | 95       |            | %     | 1        | 08/18/19  | MH | 70 - 130 %    |
| 6 Dibromofluoromethane     | 109      |            | %     | 1        | 08/18/19  | MH | 70 - 130 %    |
| % Toluene-d8               | 91       |            | %     | 1        | 08/18/19  | MH | 70 - 130 %    |
| Oxygenates & Dioxane       | <u>)</u> |            |       |          |           |    |               |
| ,4-Dioxane                 | ND       | 100        | ug/L  | 1        | 08/18/19  | MH | SW8260C (OXY) |
| Diethyl ether              | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C (OXY) |
| Di-isopropyl ether         | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C (OXY) |
| Ethyl tert-butyl ether     | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C (OXY) |
| ert-amyl methyl ether      | ND       | 1.0        | ug/L  | 1        | 08/18/19  | MH | SW8260C (OXY) |
| Semivolatiles by SIM, I    | PAH      |            |       |          |           |    |               |
| 2-Methylnaphthalene        | ND       | 0.49       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Acenaphthene               | ND       | 0.49       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Acenaphthylene             | ND       | 0.10       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Anthracene                 | ND       | 0.09       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Benz(a)anthracene          | ND       | 0.10       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Benzo(a)pyrene             | ND       | 0.20       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Benzo(b)fluoranthene       | ND       | 0.10       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| 3enzo(ghi)perylene         | ND       | 0.02       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Benzo(k)fluoranthene       | ND       | 0.10       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Chrysene                   | ND       | 0.05       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Dibenz(a,h)anthracene      | ND       | 0.02       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Fluoranthene               | ND       | 0.49       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Fluorene                   | ND       | 0.10       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| ndeno(1,2,3-cd)pyrene      | ND       | 0.10       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Vaphthalene                | ND       | 0.49       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Phenanthrene               | ND       | 0.49       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| Pyrene                     | ND       | 0.07       | ug/L  | 1        | 08/20/19  | WB | SW8270D (SIM) |
| QA/QC Surrogates           |          |            |       |          |           |    |               |
| % 2-Fluorobiphenyl         | 63       |            | %     | 1        | 08/20/19  | WB | 30 - 130 %    |
| % Nitrobenzene-d5          | 79       |            | %     | 1        | 08/20/19  | WB | 30 - 130 %    |

| Parameter                            | Result    | RL/<br>PQL | Units | Dilution | Date/Time | By | Reference     |
|--------------------------------------|-----------|------------|-------|----------|-----------|----|---------------|
| % Terphenyl-d14                      | 17        |            | %     | 1        | 08/20/19  | WB | 30 - 130 %    |
| MA EPH Aliphatic/Aroma               | atic Rang | les        |       |          |           |    |               |
| C11-C22 Aromatic Hydrocarbons 1,2*   | ND        | 190        | ug/L  | 1        | 08/16/19  | AW | MAEPH 5/2004  |
| C11-C22 Aromatic Hydrocarbons Unadj  | ND        | 190        | ug/L  | 1        | 08/16/19  | AW | MAEPH 5/2004  |
| C19-C36 Aliphatic Hydrocarbons 1*    | ND        | 190        | ug/L  | 1        | 08/16/19  | AW | MAEPH 5/2004  |
| C9-C18 Aliphatic Hydrocarbons 1*     | ND        | 190        | ug/L  | 1        | 08/16/19  | AW | MAEPH 5/2004  |
| Total TPH 1,2*                       | ND        | 190        | ug/L  | 1        | 08/16/19  | AW | MAEPH 5/2004  |
| QA/QC Surrogates                     |           |            |       |          |           |    |               |
| % 1-chlorooctadecane (aliphatic)     | 84        |            | %     | 1        | 08/16/19  | AW | 40 - 140 %    |
| % 2-Bromonaphthalene (Fractionation) | 80        |            | %     | 1        | 08/16/19  | AW | 40 - 140 %    |
| % 2-Fluorobiphenyl (Fractionation)   | 90        |            | %     | 1        | 08/16/19  | AW | 40 - 140 %    |
| % o-terphenyl (aromatic)             | 79        |            | %     | 1        | 08/16/19  | AW | 40 - 140 %    |
| MA Volatile Petroleum H              |           |            |       |          |           |    |               |
| Unadjusted C5-C8 Aliphatics (*1)     | ND        | 100        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| Unadjusted C9-C12 Aliphatics (*1)    | ND        | 100        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| C5-C8 Aliphatic Hydrocarbons *1,2    | ND        | 100        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| C9-C12 Aliphatic Hydrocarbons *1,3   | ND        | 100        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| C9-C10 Aromatic Hydrocarbons *1      | ND        | 100        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| Benzene                              | ND        | 1.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| Ethyl Benzene                        | ND        | 1.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| MTBE                                 | ND        | 1.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| Naphthalene                          | ND        | 5.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| Toluene                              | ND        | 1.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| m,p-Xylenes                          | ND        | 2.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| o-Xylene                             | ND        | 1.0        | ug/L  | 1        | 08/16/19  | RM | MA VPH 5/2004 |
| QA/QC Surrogates                     |           |            |       |          |           |    |               |
| % 2,5-Dibromotoluene (FID)           | 87        |            | %     | 1        | 08/16/19  | RM | 70 - 130 %    |
| % 2,5-Dibromotoluene (PID)           | 82        |            | %     | 1        | 08/16/19  | RM | 70 - 130 %    |

| Project ID: SOUTHBO<br>Client ID: BHCA | RO CON COM |            |       |          | Pł        | noeni | x I.D.: CD86207 |
|----------------------------------------|------------|------------|-------|----------|-----------|-------|-----------------|
| Parameter                              | Result     | RL/<br>PQL | Units | Dilution | Date/Time | Ву    | Reference       |

3 = This parameter exceeds laboratory specified limits.

C = This parameter is subcontracted.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

#### Comments:

\* See Attached.

MAEPH:

1\* Hydrocarbon range data exclude concentrations of any surrogate(s) and/or internal standards eluting in that range. 2\* C11-C12 Aromatic Hydrocarbons exclude the concentration of Target PAH analytes eluting in that range.

MA VPH method is not approved for drinking water matrices. The analysis should not be used for compliance purposes.

Semi-Volatile Comment:

Poor surrogate recovery was observed for one acid and/or one base surrogate. The other surrogates associated with this sample were within QA/QC criteria. No significant bias suspected.

Dioxin (E1613B) was analyzed by MN certified lab #027053137.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 04, 2019 Reviewed and Released by: Rashmi Makol, Project Manager



# Analysis Report

FOR: Attn: Mr. Denis D'Amore D'Amore Associates 1135 Stafford Road Tiverton, RI 02878

September 04, 2019

### Sample Information

Matrix:SURFACE WATERLocation Code:DAMORERush Request:72 HourP.O.#:Contemport

| Custody Inform | <u>nation</u>  |
|----------------|----------------|
| Collected by:  |                |
| Received by:   | SW             |
| Analyzed by:   | see "By" below |

..

 Date
 Time

 08/14/19
 08/15/19
 17:56

## Laboratory Data

SDG ID: GCD86207 Phoenix ID: CD86208

#### Project ID: SOUTHBORO CON COM Client ID: TRIP BLANK

|                                        |        | RL/        |       |          |                      |        |                    |
|----------------------------------------|--------|------------|-------|----------|----------------------|--------|--------------------|
| Parameter                              | Result | PQL        | Units | Dilution | Date/Time            | Ву     | Reference          |
| Volatiles                              |        |            |       |          |                      |        |                    |
|                                        |        | 1.0        |       | 4        | 00/15/10             | N AL L | S/M9260C           |
| 1,1,1,2-Tetrachloroethane              | ND     | 1.0<br>1.0 | ug/L  | 1        | 08/15/19<br>08/15/19 | MH     | SW8260C<br>SW8260C |
| 1,1,1-Trichloroethane                  | ND     | -          | ug/L  | 1        | 08/15/19             | MH     | SW8260C<br>SW8260C |
| 1,1,2,2-Tetrachloroethane              | ND     | 0.50       | ug/L  | 1        |                      | MH     |                    |
| 1,1,2-Trichloroethane                  | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,1-Dichloroethane                     | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,1-Dichloroethene                     | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,1-Dichloropropene                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2,3-Trichlorobenzene                 | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2,3-Trichloropropane                 | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2,4-Trichlorobenzene                 | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2,4-Trimethylbenzene                 | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2-Dibromo-3-chloropropane            | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2-Dibromoethane                      | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2-Dichlorobenzene                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2-Dichloroethane                     | ND     | 0.60       | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,2-Dichloropropane                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,3,5-Trimethylbenzene                 | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,3-Dichlorobenzene                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,3-Dichloropropane                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 1,4-Dichlorobenzene                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 2,2-Dichloropropane                    | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH     | SW8260C            |
| 2-Chlorotoluene                        | ND     | 1.0        | ug/L  | 1        | 08/15/19             | ΜΗ     | SW8260C            |
| 2-Hexanone                             | ND     | 5.0        | ug/L  | 1        | 08/15/19             | МН     | SW8260C            |
| 2-Isopropyltoluene                     | ND     | 1.0        | ug/L  | 1        | 08/15/19             | ΜΗ     | SW8260C            |
| 4-Chlorotoluene                        | ND     | 1.0        | ug/L  | 1        | 08/15/19             | МН     | SW8260C            |
| 4-Methyl-2-pentanone                   | ND     | 5.0        | ug/L  | 1        | 08/15/19             | мн     | SW8260C            |
| · ···································· |        |            | - 3   |          |                      |        |                    |

#### Project ID: SOUTHBORO CON COM Client ID: TRIP BLANK

| Parameter                   | Result | RL/<br>PQL | Units | Dilution | Date/Time            | Ву | Reference          |
|-----------------------------|--------|------------|-------|----------|----------------------|----|--------------------|
| Acetone                     | ND     | 25         | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Acrylonitrile               | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Benzene                     | ND     | 0.70       | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Bromobenzene                | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Bromochloromethane          | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Bromodichloromethane        | ND     | 0.50       | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Bromoform                   | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Bromomethane                | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Carbon Disulfide            | ND     | 5.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Carbon tetrachloride        | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Chlorobenzene               | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Chloroethane                | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Chloroform                  | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Chloromethane               | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| is-1,2-Dichloroethene       | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| is-1,3-Dichloropropene      | ND     | 0.40       | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Dibromochloromethane        | ND     | 0.50       | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Dibromomethane              | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Dichlorodifluoromethane     | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Ethylbenzene                | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| lexachlorobutadiene         | ND     | 0.40       | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| sopropylbenzene             | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| n&p-Xylene                  | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| lethyl ethyl ketone         | ND     | 5.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| fethyl t-butyl ether (MTBE) | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| lethylene chloride          | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| laphthalene                 | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| -                           | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| -Butylbenzene               | ND     | 1.0        |       | 1        | 08/15/19             | MH | SW8260C            |
| -Propylbenzene              | ND     | 1.0        | ug/L  |          |                      |    |                    |
| -Xylene                     |        | 1.0        | ug/L  | 1        | 08/15/19<br>08/15/19 | MH | SW8260C<br>SW8260C |
| -Isopropyltoluene           | ND     |            | ug/L  | 1        |                      | MH |                    |
| ec-Butylbenzene             | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| Styrene                     | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| ert-Butylbenzene            | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| etrachloroethene            | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| etrahydrofuran (THF)        | ND     | 2.5        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| oluene                      | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| otal Xylenes                | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| ans-1,2-Dichloroethene      | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| ans-1,3-Dichloropropene     | ND     | 0.40       | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| ans-1,4-dichloro-2-butene   | ND     | 5.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| richloroethene              | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| richlorofluoromethane       | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| richlorotrifluoroethane     | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| /inyl chloride              | ND     | 1.0        | ug/L  | 1        | 08/15/19             | MH | SW8260C            |
| QA/QC Surrogates            |        |            |       |          |                      |    |                    |
| 6 1,2-dichlorobenzene-d4    | 94     |            | %     | 1        | 08/15/19             | MH | 70 - 130 %         |
| 6 Bromofluorobenzene        | 97     |            | %     | 1        | 08/15/19             | MH | 70 - 130 %         |
| % Dibromofluoromethane      | 99     |            | %     | 1        | 08/15/19             | MH | 70 - 130 %         |

#### Project ID: SOUTHBORO CON COM Client ID: TRIP BLANK

| _                      |        | RL/ |       |          |           | _  |               |
|------------------------|--------|-----|-------|----------|-----------|----|---------------|
| Parameter              | Result | PQL | Units | Dilution | Date/Time | By | Reference     |
| % Toluene-d8           | 93     |     | %     | 1        | 08/15/19  | MH | 70 - 130 %    |
| Oxygenates & Dioxane   |        |     |       |          |           |    |               |
| 1,4-Dioxane            | ND     | 100 | ug/L  | 1        | 08/15/19  | MH | SW8260C (OXY) |
| Diethyl ether          | ND     | 1.0 | ug/L  | 1        | 08/15/19  | MH | SW8260C (OXY) |
| Di-isopropyl ether     | ND     | 1.0 | ug/L  | 1        | 08/15/19  | MH | SW8260C (OXY) |
| Ethyl tert-butyl ether | ND     | 1.0 | ug/L  | 1        | 08/15/19  | MH | SW8260C (OXY) |
| tert-amyl methyl ether | ND     | 1.0 | ug/L  | 1        | 08/15/19  | MH | SW8260C (OXY) |

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

#### Comments:

#### TRIP BLANK INCLUDED.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director September 04, 2019 Reviewed and Released by: Rashmi Makol, Project Manager



Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

# QA/QC Report

### September 04, 2019

### QA/QC Data

SDG I.D.: GCD86207

| Parameter                           | Blank   | Blk<br>RL | Sample<br>Result | Dup<br>Result | Dup<br>RPD | LCS<br>%    | LCSD<br>% | LCS<br>RPD | MS<br>% | MSD<br>% | MS<br>RPD | %<br>Rec<br>Limits | %<br>RPD<br>Limits |
|-------------------------------------|---------|-----------|------------------|---------------|------------|-------------|-----------|------------|---------|----------|-----------|--------------------|--------------------|
| QA/QC Batch 492675 (mg/L), Q        | C Sam   | ole No: ( | CD86230          | (CD862        | 07)        |             |           |            |         |          |           |                    |                    |
| Mercury (Dissolved)<br>Comment:     | BRL     | 0.0002    | <0.0002          | <0.0003       | NC         | 95.3        |           |            | 93.4    |          |           | 75 - 125           | 30                 |
| Additional Mercury criteria: LCS ac | ceptanc | e range f | or waters        | is 80-1209    | % and fo   | or soils is | s 75-1259 | %          |         |          |           |                    |                    |
| QA/QC Batch 492629 (mg/L), Q        | C Sam   | ole No: 0 | CD84736          | (CD862        | 07)        |             |           |            |         |          |           |                    |                    |
| ICP Metals - Dissolved              |         |           |                  |               |            |             |           |            |         |          |           |                    |                    |
| Antimony                            | BRL     | 0.005     | <0.005           | <0.005        | NC         | 99.1        | 91.1      | 8.4        | 94.5    |          |           | 75 - 125           | 20                 |
| Arsenic                             | BRL     | 0.004     | < 0.004          | < 0.004       | NC         | 91.1        | 83.8      | 8.3        | 86.8    |          |           | 75 - 125           | 20                 |
| Beryllium                           | BRL     | 0.001     | <0.001           | < 0.001       | NC         | 92.8        | 89.3      | 3.8        | 93.3    |          |           | 75 - 125           | 20                 |
| Cadmium                             | BRL     | 0.001     | <0.001           | < 0.001       | NC         | 93.6        | 84.7      | 10.0       | 88.3    |          |           | 75 - 125           | 20                 |
| Chromium                            | BRL     | 0.001     | <0.001           | < 0.001       | NC         | 93.0        | 84.4      | 9.7        | 88.1    |          |           | 75 - 125           | 20                 |
| Copper                              | BRL     | 0.005     | <0.005           | < 0.005       | NC         | 87.8        | 85.1      | 3.1        | 89.1    |          |           | 75 - 125           | 20                 |
| Iron                                | BRL     | 0.011     | 0.571            | 0.564         | 1.20       | 94.9        | 85.9      | 10.0       | 87.9    |          |           | 75 - 125           | 20                 |
| Lead                                | BRL     | 0.002     | <0.002           | < 0.002       | NC         | 92.4        | 84.3      | 9.2        | 87.0    |          |           | 75 - 125           | 20                 |
| Nickel                              | BRL     | 0.001     | <0.001           | <0.001        | NC         | 92.3        | 83.7      | 9.8        | 87.0    |          |           | 75 - 125           | 20                 |
| Selenium                            | BRL     | 0.011     | <0.011           | <0.011        | NC         | 92.1        | 83.2      | 10.2       | 86.7    |          |           | 75 - 125           | 20                 |
| Silver                              | BRL     | 0.001     | <0.001           | < 0.001       | NC         | 85.1        | 81.7      | 4.1        | 84.1    |          |           | 75 - 125           | 20                 |
| Zinc                                | BRL     | 0.002     | < 0.002          | < 0.002       | NC         | 92.8        | 84.4      | 9.5        | 87.8    |          |           | 75 - 125           | 20                 |
| QA/QC Batch 493016 (mg/L), Q        | C Sam   | ole No: ( | CD85618          | (CD862        | 07)        |             |           |            |         |          |           |                    |                    |
| ICP Metals MS - Dissolve            |         |           |                  |               |            |             |           |            |         |          |           |                    |                    |
| Thallium                            | BRL     | 0.0003    | <0.0003          | <0.0003       | NC         | 101         | 95.6      | 5.5        | 102     |          |           | 75 - 125           | 20                 |
|                                     |         |           |                  |               |            |             |           |            |         |          |           |                    |                    |



Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

# QA/QC Report

### September 04, 2019

### QA/QC Data

SDG I.D.: GCD86207

| Parameter                          | Blank  | Blk<br>RL                | LCS<br>% | LCSD<br>% | LCS<br>RPD | MS<br>% | MSD<br>% | MS<br>RPD | %<br>Rec<br>Limits | %<br>RPD<br>Limits |
|------------------------------------|--------|--------------------------|----------|-----------|------------|---------|----------|-----------|--------------------|--------------------|
| QA/QC Batch 492699 (ug/L), QC      | : Samp | le No: CD86207 (CD86207) |          |           |            |         |          |           |                    |                    |
| MAEPH - Surface Water              |        |                          |          |           |            |         |          |           |                    |                    |
| C11-C22 Aromatic Hydrocarbons 1    | ND     | 100                      | 60       | 64        | 6.5        |         |          |           | 40 - 140           | 25                 |
| C11-C22 Aromatic Hydrocarbons U    | ND     | 100                      |          |           |            |         |          |           | 40 - 140           | 25                 |
| C19-C36 Aliphatic Hydrocarbons 1*  | ND     | 100                      | 65       | 74        | 12.9       |         |          |           | 40 - 140           | 25                 |
| C9-C18 Aliphatic Hydrocarbons 1*   | ND     | 100                      | 48       | 52        | 8.0        |         |          |           | 40 - 140           | 25                 |
| Total TPH 1,2*                     | ND     | 100                      | 58       | 64        | 9.8        |         |          |           | 40 - 140           | 25                 |
| % 1-chlorooctadecane (aliphatic)   | 51     | %                        | 60       | 64        | 6.5        |         |          |           | 40 - 140           | 25                 |
| % 2-Bromonaphthalene (Fractionati  | 101    | %                        | 100      | 90        | 10.5       |         |          |           | 40 - 140           | 25                 |
| % 2-Fluorobiphenyl (Fractionation) | 74     | %                        | 76       | 74        | 2.7        |         |          |           | 40 - 140           | 25                 |
| % 2-Methylnaphthalene BT           |        | %                        | 0        | 0         | NC         |         |          |           | 0 - 5              |                    |
| % Naphthalene BT                   |        | %                        | 0        | 0         | NC         |         |          |           | 0 - 5              |                    |
| % o-terphenyl (aromatic)           | 53     | %                        | 67       | 70        | 4.4        |         |          |           | 40 - 140           | 25                 |
| Comment:                           |        |                          |          |           |            |         |          |           |                    |                    |

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional EPH fractionation criteria: Breakthrough criteria (BT) is 0 to 5%

QA/QC Batch 492646 (ug/L), QC Sample No: CD83157 (CD86207)

|                                 |       |            | • • • |    |    |      |          |    |   |
|---------------------------------|-------|------------|-------|----|----|------|----------|----|---|
| Polychlorinated Biphenyls       | - Sur | face Water |       |    |    |      |          |    |   |
| PCB-1016                        | ND    | 0.050      |       | 75 | 95 | 23.5 | 40 - 140 | 20 | r |
| PCB-1221                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| PCB-1232                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| PCB-1242                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| PCB-1248                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| PCB-1254                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| PCB-1260                        | ND    | 0.050      |       | 86 | 96 | 11.0 | 40 - 140 | 20 |   |
| PCB-1262                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| PCB-1268                        | ND    | 0.050      |       |    |    |      | 40 - 140 | 20 |   |
| % DCBP (Surrogate Rec)          | 78    | %          |       | 76 | 87 | 13.5 | 30 - 150 | 20 |   |
| % DCBP (Surrogate Rec) (Confirm | 63    | %          |       | 67 | 90 | 29.3 | 30 - 150 | 20 | r |
| % TCMX (Surrogate Rec)          | 85    | %          |       | 68 | 77 | 12.4 | 30 - 150 | 20 |   |
| % TCMX (Surrogate Rec) (Confirm | 72    | %          |       | 65 | 80 | 20.7 | 30 - 150 | 20 | r |
| <b>a</b>                        |       |            |       |    |    |      |          |    |   |

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 492647 (ug/L), QC Sample No: CD83157 (CD86207)

#### Pesticides - Surface Water

| 4,4' -DDD | ND | 0.003 | 94 | 107 | 12.9 | 40 - 140 | 20 |
|-----------|----|-------|----|-----|------|----------|----|
| 4,4' -DDE | ND | 0.003 | 71 | 84  | 16.8 | 40 - 140 | 20 |
| 4,4' -DDT | ND | 0.003 | 87 | 99  | 12.9 | 40 - 140 | 20 |
| a-BHC     | ND | 0.002 | 77 | 85  | 9.9  | 40 - 140 | 20 |
| Alachlor  | ND | 0.005 | NA | NA  | NC   | 40 - 140 | 20 |
| Aldrin    | ND | 0.002 | 60 | 69  | 14.0 | 40 - 140 | 20 |
|           |    |       |    |     |      |          |    |

### QA/QC Data

| Parameter                         | Blank | Blk<br>RL | LCS<br>% | LCSD<br>% | LCS<br>RPD | MS<br>% | MSD<br>% | MS<br>RPD | %<br>Rec<br>Limits | %<br>RPD<br>Limits |   |
|-----------------------------------|-------|-----------|----------|-----------|------------|---------|----------|-----------|--------------------|--------------------|---|
| b-BHC                             | ND    | 0.002     | 105      | 119       | 12.5       |         |          |           | 40 - 140           | 20                 | _ |
| Chlordane                         | ND    | 0.050     | 83       | 95        | 13.5       |         |          |           | 40 - 140           | 20                 |   |
| d-BHC                             | ND    | 0.005     | 74       | 80        | 7.8        |         |          |           | 40 - 140           | 20                 |   |
| Dieldrin                          | ND    | 0.002     | 85       | 97        | 13.2       |         |          |           | 40 - 140           | 20                 |   |
| Endosulfan I                      | ND    | 0.005     | 102      | 115       | 12.0       |         |          |           | 40 - 140           | 20                 |   |
| Endosulfan II                     | ND    | 0.005     | 102      | 115       | 12.0       |         |          |           | 40 - 140           | 20                 |   |
| Endosulfan sulfate                | ND    | 0.005     | 118      | 133       | 12.0       |         |          |           | 40 - 140           | 20                 |   |
| Endrin                            | ND    | 0.005     | 88       | 101       | 13.8       |         |          |           | 40 - 140           | 20                 |   |
| Endrin aldehyde                   | ND    | 0.005     | 105      | 113       | 7.3        |         |          |           | 40 - 140           | 20                 |   |
| Endrin ketone                     | ND    | 0.005     | 112      | 128       | 13.3       |         |          |           | 40 - 140           | 20                 |   |
| g-BHC                             | ND    | 0.002     | 86       | 96        | 11.0       |         |          |           | 40 - 140           | 20                 |   |
| Heptachlor                        | ND    | 0.005     | 95       | 103       | 8.1        |         |          |           | 40 - 140           | 20                 |   |
| Heptachlor epoxide                | ND    | 0.005     | 88       | 99        | 11.8       |         |          |           | 40 - 140           | 20                 |   |
| Hexachlorobenzene                 | ND    | 0.005     | 71       | 62        | 13.5       |         |          |           | 40 - 140           | 20                 |   |
| Methoxychlor                      | ND    | 0.005     | 78       | 87        | 10.9       |         |          |           | 40 - 140           | 20                 |   |
| Toxaphene                         | ND    | 0.20      | NA       | NA        | NC         |         |          |           | 40 - 140           | 20                 |   |
| % DCBP                            | 99    | %         | 95       | 111       | 15.5       |         |          |           | 30 - 150           | 20                 |   |
| % DCBP (Confirmation)             | 69    | %         | 71       | 76        | 6.8        |         |          |           | 30 - 150           | 20                 |   |
| % TCMX                            | 126   | %         | 71       | 108       | 41.3       |         |          |           | 30 - 150           | 20                 | r |
| % TCMX (Confirmation)<br>Comment: | 57    | %         | 66       | 64        | 3.1        |         |          |           | 30 - 150           | 20                 |   |

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

QA/QC Batch 492789 (ug/L), QC Sample No: CD84885 (CD86207)

#### Semivolatiles by SIM, PAH - Surface Water

|                        | 501 |      |     |     |      |     |    |       |          |    |     |
|------------------------|-----|------|-----|-----|------|-----|----|-------|----------|----|-----|
| 2-Methylnaphthalene    | ND  | 0.50 | 73  | 73  | 0.0  | 74  | 82 | 10.3  | 30 - 130 | 20 |     |
| Acenaphthene           | ND  | 0.50 | 83  | 93  | 11.4 | 91  | 66 | 31.8  | 30 - 130 | 20 | r   |
| Acenaphthylene         | ND  | 0.10 | 86  | 97  | 12.0 | 95  | 26 | 114.0 | 30 - 130 | 20 | m,r |
| Anthracene             | ND  | 0.10 | 92  | 105 | 13.2 | 102 | 64 | 45.8  | 30 - 130 | 20 | r   |
| Benz(a)anthracene      | ND  | 0.05 | 101 | 111 | 9.4  | 93  | 62 | 40.0  | 30 - 130 | 20 | r   |
| Benzo(a)pyrene         | ND  | 0.20 | 91  | 105 | 14.3 | 39  | 39 | 0.0   | 30 - 130 | 20 |     |
| Benzo(b)fluoranthene   | ND  | 0.07 | 99  | 108 | 8.7  | 74  | 59 | 22.6  | 30 - 130 | 20 | r   |
| Benzo(ghi)perylene     | ND  | 0.02 | 76  | 83  | 8.8  | 43  | 43 | 0.0   | 30 - 130 | 20 |     |
| Benzo(k)fluoranthene   | ND  | 0.10 | 100 | 109 | 8.6  | 73  | 47 | 43.3  | 30 - 130 | 20 | r   |
| Chrysene               | ND  | 0.05 | 89  | 97  | 8.6  | 78  | 63 | 21.3  | 30 - 130 | 20 | r   |
| Dibenz(a,h)anthracene  | ND  | 0.02 | 92  | 100 | 8.3  | 58  | 58 | 0.0   | 30 - 130 | 20 |     |
| Fluoranthene           | ND  | 0.50 | 95  | 105 | 10.0 | 101 | 80 | 23.2  | 30 - 130 | 20 | r   |
| Fluorene               | ND  | 0.10 | 88  | 97  | 9.7  | 94  | 83 | 12.4  | 30 - 130 | 20 |     |
| Indeno(1,2,3-cd)pyrene | ND  | 0.10 | 93  | 101 | 8.2  | 56  | 56 | 0.0   | 30 - 130 | 20 |     |
| Naphthalene            | ND  | 0.50 | 68  | 71  | 4.3  | 73  | 82 | 11.6  | 30 - 130 | 20 |     |
| Phenanthrene           | ND  | 0.06 | 84  | 93  | 10.2 | 92  | 81 | 12.7  | 30 - 130 | 20 |     |
| Pyrene                 | ND  | 0.07 | 97  | 106 | 8.9  | 101 | 33 | 101.5 | 30 - 130 | 20 | r   |
| % 2-Fluorobiphenyl     | 75  | %    | 70  | 80  | 13.3 | 78  | 71 | 9.4   | 30 - 130 | 20 |     |
| % Nitrobenzene-d5      | 75  | %    | 72  | 82  | 13.0 | 85  | 76 | 11.2  | 30 - 130 | 20 |     |
| % Terphenyl-d14        | 84  | %    | 71  | 86  | 19.1 | 44  | 32 | 31.6  | 30 - 130 | 20 | r   |
| Comment:               |     |      |     |     |      |     |    |       |          |    |     |

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

QA/QC Batch 492770 (ug/L), QC Sample No: CD85841 (CD86208)

#### Volatiles - Surface Water

| 1,1,1,2-Tetrachloroethane | ND | 1.0 | 90 | 96 | 6.5 | 70 - 130 | 30 |
|---------------------------|----|-----|----|----|-----|----------|----|
| 1,1,1-Trichloroethane     | ND | 1.0 | 89 | 93 | 4.4 | 70 - 130 | 30 |

<u>QA/QC Data</u>

| Parameter                   | Blank | Blk<br>RL | LCS<br>% | LCSD<br>% | LCS<br>RPD | MS<br>% | MSD<br>% | MS<br>RPD | %<br>Rec<br>Limits | %<br>RPD<br>Limits |
|-----------------------------|-------|-----------|----------|-----------|------------|---------|----------|-----------|--------------------|--------------------|
| 1,1,2,2-Tetrachloroethane   | ND    | 0.50      | 86       | 96        | 11.0       |         |          |           | 70 - 130           | 30                 |
| 1,1,2-Trichloroethane       | ND    | 1.0       | 76       | 97        | 24.3       |         |          |           | 70 - 130           | 30                 |
| 1,1-Dichloroethane          | ND    | 1.0       | 87       | 89        | 2.3        |         |          |           | 70 - 130           | 30                 |
| 1,1-Dichloroethene          | ND    | 1.0       | 95       | 92        | 3.2        |         |          |           | 70 - 130           | 30                 |
| 1,1-Dichloropropene         | ND    | 1.0       | 89       | 90        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 1,2,3-Trichlorobenzene      | ND    | 1.0       | 82       | 100       | 19.8       |         |          |           | 70 - 130           | 30                 |
| 1,2,3-Trichloropropane      | ND    | 1.0       | 86       | 99        | 14.1       |         |          |           | 70 - 130           | 30                 |
| 1,2,4-Trichlorobenzene      | ND    | 1.0       | 88       | 99        | 11.8       |         |          |           | 70 - 130           | 30                 |
| 1,2,4-Trimethylbenzene      | ND    | 1.0       | 90       | 89        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 1,2-Dibromo-3-chloropropane | ND    | 1.0       | 73       | 90        | 20.9       |         |          |           | 70 - 130           | 30                 |
| 1,2-Dibromoethane           | ND    | 1.0       | 84       | 95        | 12.3       |         |          |           | 70 - 130           | 30                 |
| 1,2-Dichlorobenzene         | ND    | 1.0       | 91       | 96        | 5.3        |         |          |           | 70 - 130           | 30                 |
| 1,2-Dichloroethane          | ND    | 1.0       | 86       | 100       | 15.1       |         |          |           | 70 - 130           | 30                 |
| 1,2-Dichloropropane         | ND    | 1.0       | 89       | 98        | 9.6        |         |          |           | 70 - 130           | 30                 |
| 1,3,5-Trimethylbenzene      | ND    | 1.0       | 91       | 90        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 1,3-Dichlorobenzene         | ND    | 1.0       | 91       | 90        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 1,3-Dichloropropane         | ND    | 1.0       | 87       | 95        | 8.8        |         |          |           | 70 - 130           | 30                 |
| 1,4-Dichlorobenzene         | ND    | 1.0       | 87       | 90        | 3.4        |         |          |           | 70 - 130           | 30                 |
| 1,4-dioxane                 | ND    | 100       | 87       | 94        | 7.7        |         |          |           | 40 - 160           | 30                 |
| 2,2-Dichloropropane         | ND    | 1.0       | 90       | 91        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 2-Chlorotoluene             | ND    | 1.0       | 93       | 92        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 2-Hexanone                  | ND    | 5.0       | 80       | 96        | 18.2       |         |          |           | 40 - 160           | 30                 |
| 2-Isopropyltoluene          | ND    | 1.0       | 95       | 96        | 1.0        |         |          |           | 70 - 130           | 30                 |
| 4-Chlorotoluene             | ND    | 1.0       | 90       | 89        | 1.1        |         |          |           | 70 - 130           | 30                 |
| 4-Methyl-2-pentanone        | ND    | 5.0       | 82       | 111       | 30.1       |         |          |           | 40 - 160           | 30                 |
| Acetone                     | ND    | 5.0       | 72       | 94        | 26.5       |         |          |           | 40 - 160           | 30                 |
| Acrylonitrile               | ND    | 5.0       | 75       | 90        | 18.2       |         |          |           | 70 - 130           | 30                 |
| Benzene                     | ND    | 0.70      | 86       | 92        | 6.7        |         |          |           | 70 - 130           | 30                 |
| Bromobenzene                | ND    | 1.0       | 93       | 93        | 0.0        |         |          |           | 70 - 130           | 30                 |
| Bromochloromethane          | ND    | 1.0       | 79       | 89        | 11.9       |         |          |           | 70 - 130           | 30                 |
| Bromodichloromethane        | ND    | 0.50      | 86       | 98        | 13.0       |         |          |           | 70 - 130           | 30                 |
| Bromoform                   | ND    | 1.0       | 83       | 95        | 13.5       |         |          |           | 70 - 130           | 30                 |
| Bromomethane                | ND    | 1.0       | 103      | 104       | 1.0        |         |          |           | 40 - 160           | 30                 |
| Carbon Disulfide            | ND    | 1.0       | 89       | 86        | 3.4        |         |          |           | 70 - 130           | 30                 |
| Carbon tetrachloride        | ND    | 1.0       | 91       | 88        | 3.4        |         |          |           | 70 - 130           | 30                 |
| Chlorobenzene               | ND    | 1.0       | 90       | 92        | 2.2        |         |          |           | 70 - 130           | 30                 |
| Chloroethane                | ND    | 1.0       | 97       | 94        | 3.1        |         |          |           | 70 - 130           | 30                 |
| Chloroform                  | ND    | 1.0       | 79       | 91        | 14.1       |         |          |           | 70 - 130           | 30                 |
| Chloromethane               | ND    | 1.0       | 96       | 96        | 0.0        |         |          |           | 40 - 160           | 30                 |
| cis-1,2-Dichloroethene      | ND    | 1.0       | 84       | 89        | 5.8        |         |          |           | 70 - 130           | 30                 |
| cis-1,3-Dichloropropene     | ND    | 0.40      | 82       | 99        | 18.8       |         |          |           | 70 - 130           | 30                 |
| Dibromochloromethane        | ND    | 0.50      | 88       | 103       | 15.7       |         |          |           | 70 - 130           | 30                 |
| Dibromomethane              | ND    | 1.0       | 82       | 96        | 15.7       |         |          |           | 70 - 130           | 30                 |
| Dichlorodifluoromethane     | ND    | 1.0       | 110      | 98        | 11.5       |         |          |           | 40 - 160           | 30                 |
| Ethyl ether                 | ND    | 1.0       | 82       | 96        | 15.7       |         |          |           | 70 - 130           | 30                 |
| Ethylbenzene                | ND    | 1.0       | 91       | 92        | 1.1        |         |          |           | 70 - 130           | 30                 |
| Hexachlorobutadiene         | ND    | 0.40      | 111      | 97        | 13.5       |         |          |           | 70 - 130           | 30                 |
| Isopropylbenzene            | ND    | 1.0       | 88       | 88        | 0.0        |         |          |           | 70 - 130           | 30                 |
| m&p-Xylene                  | ND    | 1.0       | 89       | 91        | 2.2        |         |          |           | 70 - 130           | 30                 |
| Methyl ethyl ketone         | ND    | 5.0       | 78       | 103       | 27.6       |         |          |           | 40 - 160           | 30                 |
| Methyl t-butyl ether (MTBE) | ND    | 1.0       | 74       | 96        | 25.9       |         |          |           | 70 - 130           | 30                 |
| Methylene chloride          | ND    | 1.0       | 78       | 83        | 6.2        |         |          |           | 70 - 130           | 30                 |
| Naphthalene                 | ND    | 1.0       | 86       | 104       | 18.9       |         |          |           | 70 - 130           | 30                 |
|                             |       |           |          |           |            |         |          |           |                    |                    |

QA/QC Data

| Parameter                   | Blank | Blk<br>RL | LCS<br>% | LCSD<br>% | LCS<br>RPD | MS<br>% | MSD<br>% | MS<br>RPD | %<br>Rec<br>Limits | %<br>RPD<br>Limits |
|-----------------------------|-------|-----------|----------|-----------|------------|---------|----------|-----------|--------------------|--------------------|
| n-Butylbenzene              | ND    | 1.0       | 88       | 92        | 4.4        |         |          |           | 70 - 130           | 30                 |
| n-Propylbenzene             | ND    | 1.0       | 89       | 90        | 1.1        |         |          |           | 70 - 130           | 30                 |
| o-Xylene                    | ND    | 1.0       | 90       | 94        | 4.3        |         |          |           | 70 - 130           | 30                 |
| p-Isopropyltoluene          | ND    | 1.0       | 89       | 89        | 0.0        |         |          |           | 70 - 130           | 30                 |
| sec-Butylbenzene            | ND    | 1.0       | 90       | 95        | 5.4        |         |          |           | 70 - 130           | 30                 |
| Styrene                     | ND    | 1.0       | 89       | 93        | 4.4        |         |          |           | 70 - 130           | 30                 |
| tert-Butylbenzene           | ND    | 1.0       | 88       | 89        | 1.1        |         |          |           | 70 - 130           | 30                 |
| Tetrachloroethene           | ND    | 1.0       | 86       | 97        | 12.0       |         |          |           | 70 - 130           | 30                 |
| Tetrahydrofuran (THF)       | ND    | 2.5       | 80       | 104       | 26.1       |         |          |           | 70 - 130           | 30                 |
| Toluene                     | ND    | 1.0       | 87       | 94        | 7.7        |         |          |           | 70 - 130           | 30                 |
| trans-1,2-Dichloroethene    | ND    | 1.0       | 86       | 91        | 5.6        |         |          |           | 70 - 130           | 30                 |
| trans-1,3-Dichloropropene   | ND    | 0.40      | 80       | 95        | 17.1       |         |          |           | 70 - 130           | 30                 |
| trans-1,4-dichloro-2-butene | ND    | 5.0       | 81       | 97        | 18.0       |         |          |           | 70 - 130           | 30                 |
| Trichloroethene             | ND    | 1.0       | 91       | 92        | 1.1        |         |          |           | 70 - 130           | 30                 |
| Trichlorofluoromethane      | ND    | 1.0       | 107      | 100       | 6.8        |         |          |           | 70 - 130           | 30                 |
| Trichlorotrifluoroethane    | ND    | 1.0       | 101      | 99        | 2.0        |         |          |           | 70 - 130           | 30                 |
| Vinyl chloride              | ND    | 1.0       | 95       | 88        | 7.7        |         |          |           | 70 - 130           | 30                 |
| % 1,2-dichlorobenzene-d4    | 95    | %         | 100      | 103       | 3.0        |         |          |           | 70 - 130           | 30                 |
| % Bromofluorobenzene        | 97    | %         | 97       | 102       | 5.0        |         |          |           | 70 - 130           | 30                 |
| % Dibromofluoromethane      | 103   | %         | 92       | 102       | 10.3       |         |          |           | 70 - 130           | 30                 |
| % Toluene-d8<br>Comment:    | 93    | %         | 99       | 99        | 0.0        |         |          |           | 70 - 130           | 30                 |

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

QA/QC Batch 492983 (ug/L), QC Sample No: CD86207 (CD86207)

#### Volatiles - Surface Water

| tolatiloo oanaoo matoi      |    |      |     |     |      |          |    |
|-----------------------------|----|------|-----|-----|------|----------|----|
| 1,1,1,2-Tetrachloroethane   | ND | 1.0  | 103 | 98  | 5.0  | 70 - 130 | 30 |
| 1,1,1-Trichloroethane       | ND | 1.0  | 96  | 89  | 7.6  | 70 - 130 | 30 |
| 1,1,2,2-Tetrachloroethane   | ND | 0.50 | 99  | 101 | 2.0  | 70 - 130 | 30 |
| 1,1,2-Trichloroethane       | ND | 1.0  | 91  | 96  | 5.3  | 70 - 130 | 30 |
| 1,1-Dichloroethane          | ND | 1.0  | 96  | 91  | 5.3  | 70 - 130 | 30 |
| 1,1-Dichloroethene          | ND | 1.0  | 98  | 90  | 8.5  | 70 - 130 | 30 |
| 1,1-Dichloropropene         | ND | 1.0  | 93  | 87  | 6.7  | 70 - 130 | 30 |
| 1,2,3-Trichlorobenzene      | ND | 1.0  | 117 | 119 | 1.7  | 70 - 130 | 30 |
| 1,2,3-Trichloropropane      | ND | 1.0  | 92  | 95  | 3.2  | 70 - 130 | 30 |
| 1,2,4-Trichlorobenzene      | ND | 1.0  | 108 | 108 | 0.0  | 70 - 130 | 30 |
| 1,2,4-Trimethylbenzene      | ND | 1.0  | 96  | 91  | 5.3  | 70 - 130 | 30 |
| 1,2-Dibromo-3-chloropropane | ND | 1.0  | 104 | 100 | 3.9  | 70 - 130 | 30 |
| 1,2-Dibromoethane           | ND | 1.0  | 96  | 95  | 1.0  | 70 - 130 | 30 |
| 1,2-Dichlorobenzene         | ND | 1.0  | 101 | 99  | 2.0  | 70 - 130 | 30 |
| 1,2-Dichloroethane          | ND | 1.0  | 83  | 91  | 9.2  | 70 - 130 | 30 |
| 1,2-Dichloropropane         | ND | 1.0  | 99  | 98  | 1.0  | 70 - 130 | 30 |
| 1,3,5-Trimethylbenzene      | ND | 1.0  | 96  | 90  | 6.5  | 70 - 130 | 30 |
| 1,3-Dichlorobenzene         | ND | 1.0  | 97  | 96  | 1.0  | 70 - 130 | 30 |
| 1,3-Dichloropropane         | ND | 1.0  | 95  | 96  | 1.0  | 70 - 130 | 30 |
| 1,4-Dichlorobenzene         | ND | 1.0  | 99  | 94  | 5.2  | 70 - 130 | 30 |
| 1,4-dioxane                 | ND | 100  | 105 | 90  | 15.4 | 40 - 160 | 30 |
| 2,2-Dichloropropane         | ND | 1.0  | 102 | 94  | 8.2  | 70 - 130 | 30 |
| 2-Chlorotoluene             | ND | 1.0  | 103 | 97  | 6.0  | 70 - 130 | 30 |
| 2-Hexanone                  | ND | 5.0  | 98  | 98  | 0.0  | 40 - 160 | 30 |
| 2-Isopropyltoluene          | ND | 1.0  | 104 | 97  | 7.0  | 70 - 130 | 30 |
| 4-Chlorotoluene             | ND | 1.0  | 96  | 91  | 5.3  | 70 - 130 | 30 |
|                             |    |      |     |     |      |          |    |

<u>QA/QC Data</u>

|                             |       | Blk  | LCS | LCSD | LCS  | MS | MSD | MS  | %<br>Rec | %<br>RPD |
|-----------------------------|-------|------|-----|------|------|----|-----|-----|----------|----------|
| Parameter                   | Blank |      | %   | %    | RPD  | %  | %   | RPD | Limits   | Limits   |
| 4-Methyl-2-pentanone        | ND    | 5.0  | 99  | 105  | 5.9  |    |     |     | 40 - 160 | 30       |
| Acetone                     | ND    | 5.0  | 92  | 91   | 1.1  |    |     |     | 40 - 160 | 30       |
| Acrylonitrile               | ND    | 5.0  | 97  | 93   | 4.2  |    |     |     | 70 - 130 | 30       |
| Benzene                     | ND    | 0.70 | 95  | 92   | 3.2  |    |     |     | 70 - 130 | 30       |
| Bromobenzene                | ND    | 1.0  | 99  | 96   | 3.1  |    |     |     | 70 - 130 | 30       |
| Bromochloromethane          | ND    | 1.0  | 100 | 95   | 5.1  |    |     |     | 70 - 130 | 30       |
| Bromodichloromethane        | ND    | 0.50 | 97  | 98   | 1.0  |    |     |     | 70 - 130 | 30       |
| Bromoform                   | ND    | 1.0  | 109 | 108  | 0.9  |    |     |     | 70 - 130 | 30       |
| Bromomethane                | ND    | 1.0  | 104 | 99   | 4.9  |    |     |     | 40 - 160 | 30       |
| Carbon Disulfide            | ND    | 1.0  | 94  | 86   | 8.9  |    |     |     | 70 - 130 | 30       |
| Carbon tetrachloride        | ND    | 1.0  | 90  | 86   | 4.5  |    |     |     | 70 - 130 | 30       |
| Chlorobenzene               | ND    | 1.0  | 101 | 96   | 5.1  |    |     |     | 70 - 130 | 30       |
| Chloroethane                | ND    | 1.0  | 99  | 92   | 7.3  |    |     |     | 70 - 130 | 30       |
| Chloroform                  | ND    | 1.0  | 93  | 91   | 2.2  |    |     |     | 70 - 130 | 30       |
| Chloromethane               | ND    | 1.0  | 98  | 92   | 6.3  |    |     |     | 40 - 160 | 30       |
| cis-1,2-Dichloroethene      | ND    | 1.0  | 96  | 95   | 1.0  |    |     |     | 70 - 130 | 30       |
| cis-1,3-Dichloropropene     | ND    | 0.40 | 100 | 100  | 0.0  |    |     |     | 70 - 130 | 30       |
| Dibromochloromethane        | ND    | 0.50 | 105 | 104  | 1.0  |    |     |     | 70 - 130 | 30       |
| Dibromomethane              | ND    | 1.0  | 91  | 95   | 4.3  |    |     |     | 70 - 130 | 30       |
| Dichlorodifluoromethane     | ND    | 1.0  | 94  | 88   | 6.6  |    |     |     | 40 - 160 | 30       |
| Ethyl ether                 | ND    | 1.0  | 95  | 93   | 2.1  |    |     |     | 70 - 130 | 30       |
| Ethylbenzene                | ND    | 1.0  | 100 | 94   | 6.2  |    |     |     | 70 - 130 | 30       |
| Hexachlorobutadiene         | ND    | 0.40 | 106 | 97   | 8.9  |    |     |     | 70 - 130 | 30       |
| Isopropylbenzene            | ND    | 1.0  | 93  | 90   | 3.3  |    |     |     | 70 - 130 | 30       |
| m&p-Xylene                  | ND    | 1.0  | 98  | 92   | 6.3  |    |     |     | 70 - 130 | 30       |
| Methyl ethyl ketone         | ND    | 5.0  | 95  | 100  | 5.1  |    |     |     | 40 - 160 | 30       |
| Methyl t-butyl ether (MTBE) | ND    | 1.0  | 92  | 101  | 9.3  |    |     |     | 70 - 130 | 30       |
| Methylene chloride          | ND    | 1.0  | 87  | 87   | 0.0  |    |     |     | 70 - 130 | 30       |
| Naphthalene                 | ND    | 1.0  | 114 | 118  | 3.4  |    |     |     | 70 - 130 | 30       |
| n-Butylbenzene              | ND    | 1.0  | 95  | 90   | 5.4  |    |     |     | 70 - 130 | 30       |
| n-Propylbenzene             | ND    | 1.0  | 99  | 92   | 7.3  |    |     |     | 70 - 130 | 30       |
| o-Xylene                    | ND    | 1.0  | 100 | 93   | 7.3  |    |     |     | 70 - 130 | 30       |
| p-Isopropyltoluene          | ND    | 1.0  | 95  | 90   | 5.4  |    |     |     | 70 - 130 | 30       |
| sec-Butylbenzene            | ND    | 1.0  | 98  | 95   | 3.1  |    |     |     | 70 - 130 | 30       |
| Styrene                     | ND    | 1.0  | 99  | 94   | 5.2  |    |     |     | 70 - 130 | 30       |
| tert-Butylbenzene           | ND    | 1.0  | 95  | 90   | 5.4  |    |     |     | 70 - 130 | 30       |
| Tetrachloroethene           | ND    | 1.0  | 99  | 95   | 4.1  |    |     |     | 70 - 130 | 30       |
| Tetrahydrofuran (THF)       | ND    | 2.5  | 103 | 108  | 4.7  |    |     |     | 70 - 130 | 30       |
| Toluene                     | ND    | 1.0  | 97  | 96   | 1.0  |    |     |     | 70 - 130 | 30       |
| trans-1,2-Dichloroethene    | ND    | 1.0  | 100 | 94   | 6.2  |    |     |     | 70 - 130 | 30       |
| trans-1,3-Dichloropropene   | ND    | 0.40 | 97  | 98   | 1.0  |    |     |     | 70 - 130 | 30       |
| trans-1,4-dichloro-2-butene | ND    | 5.0  | 113 | 114  | 0.9  |    |     |     | 70 - 130 | 30       |
| Trichloroethene             | ND    | 1.0  | 103 | 96   | 7.0  |    |     |     | 70 - 130 | 30       |
| Trichlorofluoromethane      | ND    | 1.0  | 92  | 86   | 6.7  |    |     |     | 70 - 130 | 30       |
| Trichlorotrifluoroethane    | ND    | 1.0  | 93  | 83   | 11.4 |    |     |     | 70 - 130 | 30       |
| Vinyl chloride              | ND    | 1.0  | 91  | 83   | 9.2  |    |     |     | 70 - 130 | 30       |
| % 1,2-dichlorobenzene-d4    | 97    | %    | 100 | 103  | 3.0  |    |     |     | 70 - 130 | 30       |
| % Bromofluorobenzene        | 97    | %    | 96  | 97   | 1.0  |    |     |     | 70 - 130 | 30       |
| % Dibromofluoromethane      | 104   | %    | 96  | 103  | 7.0  |    |     |     | 70 - 130 | 30       |
| % Toluene-d8                | 90    | %    | 99  | 99   | 0.0  |    |     |     | 70 - 130 | 30       |
|                             |       |      |     |      |      |    |     |     |          |          |

### QA/QC Data

|           |       |     |     |      |     |    |     |     | %      | %      |
|-----------|-------|-----|-----|------|-----|----|-----|-----|--------|--------|
|           |       | Blk | LCS | LCSD | LCS | MS | MSD | MS  | Rec    | RPD    |
| Parameter | Blank | RL  | %   | %    | RPD | %  | %   | RPD | Limits | Limits |

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

#### QA/QC Batch 492758 (ug/L), QC Sample No: CD86238 (CD86207)

Volatile Petroleum Hydrocarbons - Surface Water

| volutile i ettoleuni riyutoe      |    | 3 Junace Water |    |    |     |    |    |     |          |    |  |
|-----------------------------------|----|----------------|----|----|-----|----|----|-----|----------|----|--|
| Unadjusted C5-C8 Aliphatics (*1)  | ND | 100            | 95 | 95 | 0.0 | 94 | 97 | 3.1 | 70 - 130 | 20 |  |
| Unadjusted C9-C12 Aliphatics (*1) | ND | 100            | 90 | 89 | 1.1 | 86 | 92 | 6.7 | 70 - 130 | 20 |  |
| C5-C8 Aliphatic Hydrocarbons *1,2 | ND | 100            | 95 | 95 | 0.0 | 94 | 97 | 3.1 | 70 - 130 | 20 |  |
| C9-C12 Aliphatic Hydrocarbons *1, | ND | 100            | 90 | 89 | 1.1 | 85 | 90 | 5.7 | 70 - 130 | 20 |  |
| C9-C10 Aromatic Hydrocarbons *1   | ND | 100            | 95 | 95 | 0.0 | 93 | 97 | 4.2 | 70 - 130 | 20 |  |
| Benzene                           | ND | 1.0            | 88 | 89 | 1.1 | 90 | 93 | 3.3 | 70 - 130 | 20 |  |
| Ethyl Benzene                     | ND | 1.0            | 91 | 91 | 0.0 | 91 | 95 | 4.3 | 70 - 130 | 20 |  |
| MTBE                              | ND | 1.0            | 94 | 94 | 0.0 | 93 | 96 | 3.2 | 70 - 130 | 20 |  |
| Naphthalene                       | ND | 5.0            | 89 | 89 | 0.0 | 86 | 87 | 1.2 | 70 - 130 | 20 |  |
| Toluene                           | ND | 1.0            | 90 | 91 | 1.1 | 91 | 95 | 4.3 | 70 - 130 | 20 |  |
| m,p-Xylenes                       | ND | 2.0            | 92 | 92 | 0.0 | 92 | 95 | 3.2 | 70 - 130 | 20 |  |
| o-Xylene                          | ND | 1.0            | 89 | 90 | 1.1 | 89 | 93 | 4.4 | 70 - 130 | 20 |  |
| % 2,5-Dibromotoluene (PID)        | 89 | %              | 93 | 93 | 0.0 | 87 | 86 | 1.2 | 70 - 130 | 20 |  |
| Comment:                          |    |                |    |    |     |    |    |     |          |    |  |
|                                   |    |                |    |    |     |    |    |     |          |    |  |

A blank MS/MSD was analyzed with this batch.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

**RPD** - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director September 04, 2019

Wednesday, September 04, 2019

Criteria: MA: CAM, GW3

State: MA

### Sample Criteria Exceedances Report

### GCD86207 - DAMORE

| State:  | MA        |                             |                               |        |     |          | RL       | Analysis |
|---------|-----------|-----------------------------|-------------------------------|--------|-----|----------|----------|----------|
| SampNo  | Acode     | Phoenix Analyte             | Criteria                      | Result | RL  | Criteria | Criteria | Units    |
| CD86207 | \$8260GWR | trans-1,4-dichloro-2-butene | MA / CAM Protocol / VOA AQ RL | ND     | 5.0 |          | 2        | ug/L     |
| CD86207 | \$8260GWR | Tetrahydrofuran (THF)       | MA / CAM Protocol / VOA AQ RL | ND     | 2.5 |          | 2        | ug/L     |
| CD86207 | \$8260GWR | Carbon Disulfide            | MA / CAM Protocol / VOA AQ RL | ND     | 5.0 |          | 2        | ug/L     |
| CD86207 | \$8260GWR | Acetone                     | MA / CAM Protocol / VOA AQ RL | ND     | 25  |          | 10       | ug/L     |
| CD86208 | \$8260GWR | trans-1,4-dichloro-2-butene | MA / CAM Protocol / VOA AQ RL | ND     | 5.0 |          | 2        | ug/L     |
| CD86208 | \$8260GWR | Tetrahydrofuran (THF)       | MA / CAM Protocol / VOA AQ RL | ND     | 2.5 |          | 2        | ug/L     |
| CD86208 | \$8260GWR | Carbon Disulfide            | MA / CAM Protocol / VOA AQ RL | ND     | 5.0 |          | 2        | ug/L     |
| CD86208 | \$8260GWR | Acetone                     | MA / CAM Protocol / VOA AQ RL | ND     | 25  |          | 10       | ug/L     |

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

|                 | MassDEP Analytical Protocol Certification Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------|----------|---------------------------------------|-----------------|-------------------------------|--------|----------------|----------------|--|--|
| Labo            | Laboratory Name: Phoenix Environmental Laboratories, Inc. Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
| Proj            | Project Location: SOUTHBORO CON COM RTN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
| This I          | This Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
| CD86            | CD86207, CD86208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
|                 | Matrices: ✔ Groundwater/Surface Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | check all that app                                                                   |                        |          |                                       |                 |                               |        |                |                |  |  |
| 8260 \<br>CAM I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7470/7471 Hg<br>CAM III B                                                            | MassDEP VP<br>CAM IV A | °H<br>✔  | 8081 Pesticides<br>CAM V B            | ✓               | 7196 Hex Cr<br>CAM VI B       |        | CAM I          | DEP APH<br>X A |  |  |
| 8270 S<br>CAM I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7010 Metals<br>CAM III C                                                             | MassDEP EP<br>CAM IV B | rH<br>V  | 8151 Herbicides<br>CAM V C            |                 | 8330 Explosives<br>CAM VIII A |        | TO-15<br>CAM I |                |  |  |
| 6010 N<br>CAM I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6020 Metals<br>CAM III D                                                             | 8082 PCB<br>CAM V A    |          | 9012 Total<br>Cyanide/PAC<br>CAM V1 A |                 | 6860 Perchlorat<br>CAM VIII B |        |                |                |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ive responses to c                                                                   |                        | -        |                                       |                 |                               | Certa  | inty" s        | status         |  |  |
| A               | Chain-of-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | samples received ir<br>Custody, properly p<br>/, and prepared/ana                    | reserved (inc          | luding t | temperature*) ir                      | the f           | ield or                       | ✓      | Yes            | □ No           |  |  |
| В               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | analytical method(<br>CAM protocol(s) foll                                           |                        | ociated  | QC requiremer                         | nts sp          | ecified in the                | ✓      | Yes            | 🗆 No           |  |  |
| С               | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                      |                        |          |                                       |                 |                               |        |                |                |  |  |
| D               | CAM VII A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | laboratory report co<br>A, "Quality Assuran<br>orting of Analytical D                | ce and Qualit          |          |                                       |                 |                               | ✓      | Yes            | □ No           |  |  |
| E               | significan<br>modificati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PH, and APH Meth<br>t modification(s)? (<br>ons).<br>nd TO-15 methods                | refer to the in        | ndividua | I method(s) for                       | a list          | of significant                |        | Yes<br>Yes     | □ No<br>□ No   |  |  |
|                 | method?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                      | -                      | •        | •                                     | •               |                               |        |                |                |  |  |
| F               | conforma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | applicable CAM pro<br>nces identified and<br>s to Questions A th                     | evaluated in           |          |                                       |                 |                               | ✓      | Yes            | □ No           |  |  |
|                 | Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ponses to questio                                                                    | ns G, H and            | l below  | is required fo                        | r " <b>Pr</b> € | esumptive Cer                 | tainty | " statu        | IS             |  |  |
| G               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reporting limits at c<br>CAM protocol(s)?                                            | r below all C          | AM repo  | orting limits spe                     | cified          | in the                        |        | Yes            | ✓ No           |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Data that achieve "P<br>ss requirements des                                          |                        |          |                                       |                 |                               | data u | sability       | / and          |  |  |
| Н               | See Secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QC performance sta<br>ons: PCB, PEST N                                               | arrations .            |          | -                                     |                 |                               |        | Yes            | ✓ No           |  |  |
| -               | Were responses of the second s | ,                                                                                    | •                      | -        | •                                     |                 |                               |        | Yes            | ✓ No           |  |  |
| respo           | nsible for o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | All negative r<br>d, attest under the p<br>btaining the informa<br>ate and complete. | ains and pena          | lties of |                                       | ed up           | on my personal                | inqu   |                |                |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                        |          | D                                     | ate: \          | Wednesday, S                  | Septe  | mber           | 04, 2019       |  |  |
|                 | norized<br>nature: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rashu                                                                                | i mak                  | ø        | Printed Na                            | me: I           | Rashmi Mako                   | I      |                |                |  |  |
| Sigi            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                        |          | Posit                                 | ion: I          | Project Manag                 | ger    |                |                |  |  |





# MCP Certification Report

September 04, 2019

SDG I.D.: GCD86207

#### SDG Comments

#### Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 MCP list.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

#### EPH Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

#### Instrument:

#### AU-FID4 08/16/19-1

Adam Werner, Chemist 08/16/19

CD86207

The initial calibration (AL0730BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 25% except for the following compounds:None.

#### QC (Batch Specific):

#### Batch 492699 (CD86207)

CD86207

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 25% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional EPH fractionation criteria: Breakthrough criteria (BT) is 0 to 5%

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

#### Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

#### Instrument:

#### MERLIN 08/20/19 07:18

Rick Schweitzer, Chemist 08/20/19

#### CD86207

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

#### QC (Batch Specific):

#### Batch 492675 (CD86230)

CD86207





# **Certification Report**

September 04, 2019

SDG I.D.: GCD86207

#### **Mercury Narration**

All LCS recoveries were within 75 - 125 with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

#### ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

#### Instrument:

BLUE 08/15/19 08:57

Tina Hall, Chemist 08/15/19

CD86207

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

#### QC (Batch Specific):

#### Batch 492629 (CD84736)

CD86207

All LCS recoveries were within 75 - 125 with the following exceptions: None. All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

#### **ICPMS Metals Narration**

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

#### Instrument:

#### ICPMS 08/22/19 12:34

Cindy Pearce, Chemist 08/22/19

CD86207

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following samples did not meet internal standard criteria: None.

#### QC (Batch Specific):

#### Batch 493016 (CD85618)

CD86207

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.





# MCP Certification Report

September 04, 2019

SDG I.D.: GCD86207

#### PCB Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 492646 (Samples: CD86207): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (PCB-1016)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% DCBP (Surrogate Rec) (Confirmation), % TCMX (Surrogate Rec) (Confirmation))

#### Instrument:

#### AU-ECD1 08/16/19-1

Saadia Chudary, Chemist 08/16/19

CD86207

The initial calibration (PC814AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC814BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

#### QC (Batch Specific):

#### Batch 492646 (CD83157)

CD86207

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % DCBP (Surrogate Rec) (Confirmation)(29.3%), % TCMX (Surrogate Rec) (Confirmation)(20.7%), PCB-1016(23.5%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

#### **PEST Narration**

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 492647 (Samples: CD86207): -----

# The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% TCMX)

#### Instrument:

#### AU-ECD4 08/16/19-1

Adam Werner, Chemist 08/16/19

CD86207

The initial calibration (PS808AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PS808BI) RSD for the compound list was less than 20% except for the following compounds: None. The Endrin and DDT breakdown does not exceed 15% except for the following compounds:None.

The Endrin and DDT breakdown does not exceed the maximum of 20% except for the following compounds:None.

The continuing calibration %D for the compound list was less than 20% except for the following compounds:





# MCP Certification Report

September 04, 2019

SDG I.D.: GCD86207

#### **PEST Narration**

Samples: CD86207

Preceding CC 816A061 - Methoxychlor -21%L (20%)

Succeeding CC 816A072 - None.

A low "1A" standard was run after the samples to demonstrate capability to detect any compounds outside of the CC acceptance criteria. All reported samples were ND for the affected compounds.

#### QC (Batch Specific):

#### Batch 492647 (CD83157)

CD86207

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % TCMX(41.3%)

A LCS and LCS duplicate were performed instead of a MS and MSD. Alpha and gamma chlordane were spiked and analyzed instead of technical chlordane. Gamma chlordane recovery is reported as chlordane in the LCS and LCSD

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

#### SVOASIM Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

#### Instrument:

CHEM27 08/20/19-1

Wes Bryon, Chemist 08/20/19

CD86207

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM27/27\_BNSIM18\_0819):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM27/0820\_03-27\_BNSIM18\_0819) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

#### QC (Batch Specific):

#### Batch 492789 (CD84885)

CD86207

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.





# MCP Certification Report

September 04, 2019

SDG I.D.: GCD86207

#### **SVOASIM Narration**

All LCS/LCSD RPDs were less than 20% with the following exceptions: None. Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

#### **VOA Narration**

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

#### Instrument:

CHEM17 08/15/19-2

Michael Hahn, Chemist 08/15/19

CD86208

Initial Calibration Evaluation (CHEM17/VT-S081419):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.042 (0.05), 2-Hexanone 0.073 (0.1), 4-Methyl-2-pentanone 0.097 (0.1), Acetone 0.049 (0.1), Bromoform 0.092 (0.1), Methyl ethyl ketone 0.056 (0.1), Tetrahydrofuran (THF) 0.032 (0.05)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM17/0815\_28-VT-S081419) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.041 (0.05), 2-Hexanone 0.073 (0.1), Acetone 0.046 (0.1), Acrylonitrile 0.048 (0.05), Bromoform 0.096 (0.1), Methyl ethyl ketone 0.055 (0.1), Tetrahydrofuran (THF) 0.035 (0.05)

The following compounds did not meet minimum response factors: None.

CHEM17 08/18/19-1 Michael Hahn, Chemist 08/18/19

CD86207

Initial Calibration Evaluation (CHEM17/VT-S081419):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.042 (0.05), 2-Hexanone 0.073 (0.1), 4-Methyl-2-pentanone 0.097 (0.1), Acetone 0.049 (0.1), Bromoform 0.092 (0.1), Methyl ethyl ketone 0.056 (0.1), Tetrahydrofuran (THF) 0.032 (0.05)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM17/0818\_02-VT-S081419) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.045 (0.05), 2-Hexanone 0.079 (0.1), Acetone 0.044 (0.1), Acrylonitrile 0.049 (0.05), Methyl ethyl ketone 0.057 (0.1), Tetrahydrofuran (THF) 0.035 (0.05)





# MCP Certification Report

September 04, 2019

SDG I.D.: GCD86207

#### **VOA Narration**

The following compounds did not meet minimum response factors: None.

#### QC (Batch Specific):

#### Batch 492770 (CD85841)

#### CD86208

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate. Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

#### Batch 492983 (CD86207)

CD86207

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

We attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

#### **VPH** Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

#### Instrument:

#### PIDFID 08/16/19-2

Raman Makol, Chemist 08/16/19

CD86207

Initial Calibration Evaluation (PIDFID/VPH\_071719\_T): The following compounds exceeded %RSD criteria: None.

#### QC (Batch Specific):

#### Batch 492758 (CD86238)

#### CD86207

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 20% with the following exceptions: None. A blank MS/MSD was analyzed with this batch.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

### **EPH Fractionation Standard**



#### Wednesday, September 04, 2019

Page 1 of 2

#### SDG I.D.: GCD86207

| AS #                   | тν | 20ml  | 22ml  | 25ml  | 30ml  | % Rec1 | % Rec2 | % Rec3 | % Rec4 | <b>Rec Limits</b> |
|------------------------|----|-------|-------|-------|-------|--------|--------|--------|--------|-------------------|
| C9 - Nonane            | 40 | 18.96 | 20.27 | 20.49 | 18.72 | 47.4   | 50.7   | 51.2   | 46.8   | Nec Linnts        |
|                        | -  |       |       |       |       |        |        |        |        |                   |
| C-10 Decane            | 40 | 22.86 | 24.41 | 24.96 | 22.64 | 57.2   | 61.0   | 62.4   | 56.6   |                   |
| 1,2,3-Trimethylbenzene | 40 | 32.15 | 32.70 | 29.72 | 32.49 | 80.4   | 81.7   | 74.3   | 81.2   |                   |
| Naphthalene            | 40 | 35.31 | 35.92 | 32.63 | 35.76 | 88.3   | 89.8   | 81.6   | 89.4   |                   |
| 2-Methylnaphthalene    | 40 | 36.24 | 36.93 | 33.55 | 36.75 | 90.6   | 92.3   | 83.9   | 91.9   |                   |
| C12 - Dodecane         | 40 | 25.51 | 27.21 | 27.57 | 25.45 | 63.8   | 68.0   | 68.9   | 63.6   |                   |
| Acenaphthalene         | 40 | 37.76 | 38.39 | 34.67 | 38.23 | 94.4   | 96.0   | 86.7   | 95.6   |                   |
| Acenaphthene           | 40 | 38.58 | 39.12 | 35.34 | 39.01 | 96.5   | 97.8   | 88.3   | 97.5   |                   |
| C14 - Tetradecane      | 40 | 28.57 | 30.45 | 30.82 | 28.72 | 71.4   | 76.1   | 77.1   | 71.8   |                   |
| Fluorene               | 40 | 40.44 | 40.86 | 36.93 | 40.77 | 101.1  | 102.1  | 92.3   | 101.9  |                   |
| C16 - Hexadecane       | 40 | 32.57 | 34.72 | 34.82 | 32.64 | 81.4   | 86.8   | 87.1   | 81.6   |                   |
| Anthracene             | 40 | 38.92 | 38.81 | 35.41 | 39.01 | 97.3   | 97.0   | 88.5   | 97.5   |                   |
| Phenanthrene           | 40 | 39.66 | 39.52 | 36.02 | 39.67 | 99.2   | 98.8   | 90.0   | 99.2   |                   |
| C18 - Octadecane       | 40 | 35.54 | 37.74 | 37.80 | 35.57 | 88.9   | 94.3   | 94.5   | 88.9   |                   |
| Fluoranthene           | 40 | 38.97 | 38.68 | 35.51 | 39.03 | 97.4   | 96.7   | 88.8   | 97.6   |                   |
| Pyrene                 | 40 | 39.20 | 38.87 | 35.63 | 39.29 | 98.0   | 97.2   | 89.1   | 98.2   |                   |
| C20 - Eicosane         | 40 | 37.67 | 40.11 | 39.74 | 37.68 | 94.2   | 100.3  | 99.4   | 94.2   |                   |
| C21 - Heneicosane      | 40 | 36.65 | 39.06 | 38.49 | 36.41 | 91.6   | 97.7   | 96.2   | 91.0   |                   |
| C22 - Docosane         | 40 | 38.25 | 41.01 | 40.01 | 37.71 | 95.6   | 102.5  | 100.0  | 94.3   |                   |
| Benzo(a)anthracene     | 40 | 39.10 | 37.48 | 34.74 | 38.88 | 97.7   | 93.7   | 86.9   | 97.2   |                   |
| Chyrsene               | 40 | 37.05 | 38.18 | 35.03 | 38.36 | 92.6   | 95.5   | 87.6   | 95.9   |                   |
| C24 - Tetracosane      | 40 | 37.34 | 40.13 | 39.11 | 36.91 | 93.3   | 100.3  | 97.8   | 92.3   |                   |
| Benzo(b/K)fluor COPK   | 80 | 75.89 | 74.71 | 68.89 | 75.77 | 94.9   | 93.4   | 86.1   | 94.7   |                   |
| Benzo(a)pyrene         | 40 | 40.14 | 39.73 | 35.90 | 40.28 | 100.4  | 99.3   | 89.8   | 100.7  |                   |
| C26 - Hexacosane       | 40 | 38.34 | 41.64 | 40.56 | 38.11 | 95.8   | 104.1  | 101.4  | 95.3   |                   |
| C28 - Octacosane       | 40 | 39.72 | 42.67 | 41.97 | 39.37 | 99.3   | 106.7  | 104.9  | 98.4   |                   |
| Indeno/Dibenz copk     | 80 | 13.90 | 74.92 | 71.31 | 31.64 | 17.4   | 93.7   | 89.1   | 39.5   |                   |
| Benzo(ghi)perylene     | 40 | 39.27 | 35.61 | 34.83 | 36.15 | 98.2   | 89.0   | 87.1   | 90.4   |                   |
|                        |    |       |       |       |       |        |        |        |        |                   |
| C30 - Tricotane        | 40 | 37.50 | 40.32 | 39.72 | 37.25 | 93.7   | 100.8  | 99.3   | 93.1   |                   |
| C32 - Dotriacontance   | 40 | 37.09 | 39.88 | 39.50 | 36.81 | 92.7   | 99.7   | 98.7   | 92.0   |                   |
| C34 - Tetratriacontane | 40 | 36.67 | 39.41 | 38.78 | 36.38 | 91.7   | 98.5   | 97.0   | 90.9   |                   |
| C36 - Hexatriacontane  | 40 | 35.46 | 37.75 | 37.62 | 35.32 | 88.6   | 94.4   | 94.1   | 88.3   |                   |

# **EPH Fractionation Standard**



SDG I.D.: GCD86207

I.D.: GCD00207

|                       | Effective Date(s): 10/20/18 - 10/20/19 |       |       |       | Analyst: aw |        |        |        |        |                   |
|-----------------------|----------------------------------------|-------|-------|-------|-------------|--------|--------|--------|--------|-------------------|
| AS #                  | тv                                     | 20ml  | 22ml  | 25ml  | 30ml        | % Rec1 | % Rec2 | % Rec3 | % Rec4 | <b>Rec Limits</b> |
| C38 - Octatriacontane | 40                                     | 35.41 | 37.31 | 37.18 | 35.44       | 88.5   | 93.3   | 92.9   | 88.6   |                   |
| C40 - Tetracontane    | 40                                     | 35.55 | 36.94 | 37.28 | 35.41       | 88.9   | 92.4   | 93.2   | 88.5   |                   |

Notes: EPH Frac Check Solution EPH10b-solvent transfer into hex, frac 1ml. Dilute 5x to run tv=40 Lot:140118-1165992 AU-FID3 10/29/18 EPH O29\_062/O29\_064/O29\_066/O29\_068





www.pacelabs.com

ww.paceiabs.com

## **Report Prepared for:**

Bobbi Aloisa Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester CT 06040

# REPORT OF LABORATORY ANALYSIS FOR PCDD/PCDF

### **Report Prepared Date:**

September 3, 2019

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

### **Report Information:**

Pace Project #: 10488182 Sample Receipt Date: 08/20/2019 Client Project #: CD86207 Client Sub PO #: N/A State Cert #: M-MN064

### **Invoicing & Reporting Options:**

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Joanne Richardson, your Pace Project Manager.

#### This report has been reviewed by:

oane Michardson September 03, 2019

Joanne Richardson, (612) 607-6453 (612) 607-6444 (fax)



### **Report of Laboratory Analysis**

This report should not be reproduced, except in full, without the written consent of PaceAnalytical Services, Inc.

The results relate only to the samples included in this report.



Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

# **DISCUSSION**

This report presents the results from the analysis performed on one sample submitted by a representative of Phoenix Environmental Laboratories, Inc. The sample was analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The reporting limits were set to correspond to the lowest calibration points and a nominal 1-Liter sample amount, and the sensitivity was verified by signal-to-noise measurements. The quantitation limits, adjusted for sample extraction amount, may be somewhat higher or lower than the reporting limits provided in this report.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extract ranged from 52-83%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for variation in recovery and accurate values were obtained.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to be free of PCDDs and PCDFs at the reporting limits. These results indicate that the sample preparation procedures did not significantly impact the results reported for the field sample.

Laboratory spike samples were also prepared with the sample batch using clean reference matrix that had been fortified with native standard materials. The results show that the spiked native compounds were recovered at 87-118% with relative percent differences of 0.0-7.9%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.



> Tel: 612-607-1700 Fax: 612-607-6444

# Minnesota Laboratory Certifications

| Authority      | Certificate #  | Authority        | Certificate # |
|----------------|----------------|------------------|---------------|
| A2LA           | 2926.01        | Minnesota - Pet  | 1240          |
| Alabama        | 40770          | Mississippi      | MN00064       |
| Alaska - DW    | MN00064        | Missouri - DW    | 10100         |
| Alaska - UST   | 17-009         | Montana          | CERT0092      |
| Arizona        | AZ0014         | Nebraska         | NE-OS-18-06   |
| Arkansas - DW  | MN00064        | Nevada           | MN00064       |
| Arkansas - WW  | 88-0680        | New Hampshire    | 2081          |
| CNMI Saipan    | MP0003         | New Jersey (NE   | MN002         |
| California     | 2929           | New York         | 11647         |
| Colorado       | MN00064        | North Carolina   | 27700         |
| Connecticut    | PH-0256        | North Carolina - | 27700         |
| EPA Region 8+  | via MN 027-053 | North Carolina - | 530           |
| Florida (NELAP | E87605         | North Dakota     | R-036         |
| Georgia        | 959            | Ohio - DW        | 41244         |
| Guam           | 17-001r        | Ohio - VAP       | CL101         |
| Hawaii         | MN00064        | Oklahoma         | 9507          |
| Idaho          | MN00064        | Oregon - Primar  | MN300001      |
| Illinois       | 200011         | Oregon - Secon   | MN200001      |
| Indiana        | C-MN-01        | Pennsylvania     | 68-00563      |
| lowa           | 368            | Puerto Rico      | MN00064       |
| Kansas         | E-10167        | South Carolina   | 74003         |
| Kentucky - DW  | 90062          | South Dakota     | NA            |
| Kentucky - WW  | 90062          | Tennessee        | TN02818       |
| Louisiana - DE | 03086          | Texas            | T104704192    |
| Louisiana - DW | MN00064        | Utah (NELAP)     | MN00064       |
| Maine          | MN00064        | Virginia         | 460163        |
| Maryland       | 322            | Washington       | C486          |
| Massachusetts  | M-MN064        | West Virginia -  | 382           |
| Michigan       | 9909           | West Virginia -  | 9952C         |
| Minnesota      | 027-053-137    | Wisconsin        | 999407970     |
| Minnesota - De | via MN 027-053 | Wyoming - UST    | 2926.01       |

# **REPORTOFLABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

# Appendix A

Sample Management

| Cooler: Yes 00 No | 82%                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                             | MCP Certification         Data Format           MCP Certification         Data Format           MCP Certification         Data Format           MCP Certification         Excel           GW-1         Excel           GW-3         Data Format           GW-1         Excel           GW-3         Data Package           GW-3         Data Package           S-1 GW-1         S-2 GW-3           S-1 GW-1         S-2 GW-3           S-1 GW-1         S-2 GW-3           S-1 GW-1         S-3 GW-3           S-1 GW-1         S-3 GW-3           S-3 GW-1         S-3 GW-3           S-3 GW-1         S-3 GW-3           MWRA eSMART         Other           MWRA eSMART         Other           Other         Other |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAIN OF CUSTODY RECORD<br>587 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040<br>Email: info@phoenixlabs.com Fax (860) 645-0823<br>Clint Sourices (950) 545-0823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project:<br>Project:<br>Report to: <u>COND</u> , <u>AIDI-SC</u><br>Invoice to:<br>QUOTE # | Analysis<br>Request Control Analysis                                                                                                                                                                                                                                                                               |                                                             | RI     CI       Direct Exposure     CT       C     RCP Cert       C     RCP Cert       C     RCP Cert       C     GW       C     GW       C     C       C     GW       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C                                     |
| <7000W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a ()                                                                                      | Client Sample - Information - Identification<br>Date:                                                                                                                                                                                                                                                              | ple Sample Date Time Matrix Sampled Sampled Sampled Sampled | Date:<br>Date:<br>B-19-19<br>Turmaround<br>1 Day<br>1 Day<br>2 Days<br>3 Days<br>3 Days<br>3 Cher<br>* Suncher                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PHOENIX C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Customer: Pace And<br>Address:                                                            | Client Sample - Information - Identification         Sampler's       Date:         Signature       Date:         Matrix Code:       DW=Drinking Water GW=Ground Water SW=Surface Water Wwe-Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Solid W=Wipe OIL=Oil         B=Bulk L=Liquid X =       (Other) | PHOENIX USE ONLY<br>SAMPLE # Identification<br>CDS(C)CT     | Retinquished by Accepted by Accepted by Accepted by Comments, Special Requirements or Regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Pe                                                                                                                               | )<br>nce Analytical                                                   | Sample                     | Condit<br>Doc   | ument N      | Receipt For                               | m                      |                               | P.<br>Issuii              | Revised: 09May<br>age 1 of 1<br>ng Authority:                    |                 |                            |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|-----------------|--------------|-------------------------------------------|------------------------|-------------------------------|---------------------------|------------------------------------------------------------------|-----------------|----------------------------|
|                                                                                                                                  | ······                                                                | <u> </u>                   | <u></u> -WIN    | -L-213-re    |                                           |                        |                               |                           | esota Quality O                                                  |                 |                            |
| Upon Receipt                                                                                                                     | ient Name:                                                            |                            |                 | Р            | roject #:                                 | <u>M</u> (             | )#:1                          | 04                        | 8818                                                             | <u>32</u>       |                            |
| Courier:                                                                                                                         | Holnix Environ<br>Fed Ex XUPS<br>Pace Speet<br>532.443.13.96          | Dee DC                     | _               | Clie         |                                           |                        | JMR<br>ENT: Pho               | oeni>                     | Due Date:<br>Env.                                                | 09/0            | 4/19                       |
| Custody Seal on Cooler,<br>Packing Material: 🛛 🕅                                                                                 | <b>/Box Present?</b> Yes Bubble Wrap Bubb                             | Ie Bags [                  | Se<br>None      | eals Intac   |                                           | • 🔀                    | No Biol                       |                           | ïissue Frozen?<br>Temp Blank?                                    | ∐Yes<br>XYes    |                            |
| Thermometer:                                                                                                                     | (0461) Ø.T2(1336) □T3(0<br>(0254) □ T5(0489)<br>Sample must bave temp |                            | Type of         | •            | 🗌 Wet 🌶                                   | Blue                   | None                          |                           | Dry Melte                                                        | d               | _                          |
| Temp should be above freezing                                                                                                    |                                                                       |                            | -               |              | 5,3                                       |                        | <u>°c</u>                     | Ave                       | age Corrected                                                    | Temp            | See Exceptions             |
| Correction Factor:+(                                                                                                             | <u>λι</u> Cooler Temp Corr                                            | ected w/ten                | ıp blanl        | c:           | 5.4                                       |                        | °C                            | (n                        | o temp blank c<br>°C                                             | ••              |                            |
| USDA Regulated Soil: (<br>Did samples originate in a c<br>!D, LA. MS, NC, NM, NY, OK<br>If Yes                                   | uarantine zone within the                                             | United States<br>ck maps)? | Yes             | No           | iA, Did sar<br>Hawaii                     | nples ori<br>and Pue   | iginate from :<br>erto Rico)? | a foreigi<br> <br>  SCUR/ | Contents:<br>source (interna<br>]YesNo<br>COC paperwoa<br>MENTS: | tionally, i     | <u>3/20/19</u><br>ncluding |
| Chain of Custody Present and                                                                                                     |                                                                       | Yes                        | <u>□</u> No     |              | 1.                                        |                        |                               |                           |                                                                  |                 |                            |
| Chain of Custody Relinquishe<br>Sampler Name and/or Signat                                                                       |                                                                       | Yes                        | <u>No</u><br>No |              | 2.                                        |                        |                               |                           |                                                                  |                 |                            |
| Samples Arrived within Hold                                                                                                      |                                                                       | Yes X                      |                 | □n/A         | 3.                                        |                        |                               |                           | <u>-</u> -                                                       |                 |                            |
| Short Hold Time Analysis (<7                                                                                                     | /2 hr)?                                                               | Yes                        | Ĵ <b>X</b> ÍN₀  |              | 5. 🗍 Fec                                  | al Colifor<br>bidity 🔲 | m 🖾 HPC 🔲<br>Nitrate 🗌 Nit    | Total Col<br>trite 🔲 C    | iform/E coli ∏BC<br>rthophos ∏Othe                               | DD/cBOD [<br>er | Hex Chrome                 |
| Rush Turn Around Time Req                                                                                                        | uested?                                                               | Yes                        | <b>X</b> No     |              | 6.                                        |                        |                               |                           |                                                                  |                 |                            |
| Sufficient Volume?                                                                                                               | ······································                                | XYes                       |                 | <u> </u>     | 7.                                        |                        |                               |                           |                                                                  | <u> </u>        |                            |
| Correct Containers Used?<br>-Pace Containers Used?                                                                               | ,                                                                     | XYes                       | ⊡No<br>⊠No      |              | 8.                                        |                        |                               |                           |                                                                  |                 |                            |
| Containers Intact?                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                 | Yes<br>Yes                 |                 |              | 9.                                        |                        |                               |                           |                                                                  |                 |                            |
| Field Filtered Volume Receive                                                                                                    | d for Dissolved Tests?                                                | Yes                        |                 | XN/A         |                                           | diment                 | visible in the                | discolu                   | ed container?                                                    | Yes [           | Ίνο                        |
| Is sufficient information avail<br>to the COC?<br>Matrix: Water Soil Oil                                                         | able to reconcile the sampl                                           |                            |                 |              | 1                                         |                        | Date/Time or                  |                           |                                                                  |                 | See Exception              |
| All containers needing acid/b<br>checked?                                                                                        | ase preservation have beer                                            | n 🗍Yes                     | □No             | XN/A         | 12. Sample                                | #                      |                               |                           | -,- <u>-</u>                                                     |                 |                            |
| All containers needing preser<br>compliance with EPA recomm<br>(HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , <2pH, NaOH > | endation?                                                             | □Yes<br>e)                 | ∏No             | <b>∭</b> N∕A |                                           | NaOH                   | - HP                          | VO3                       | ∏H₂SO₄                                                           | Zir             | ic Acetate                 |
| Exceptions: VOA, Coliform, TC<br>DRO/8015 (water) and Dioxin                                                                     |                                                                       | Yes                        | ∏No             | XN/A         | Positive for<br>Chlorine?<br>Res. Chiorit |                        | _Yes<br>_No<br>0-6 Roll       | рН Рар                    | er Lot#<br>0-6 Strip                                             | 0-1             | See Exception 4 Strip      |
|                                                                                                                                  |                                                                       |                            |                 | <b>1</b>     | 13.                                       | ł                      |                               |                           |                                                                  |                 | See Exception              |
| Headspace in VOA Vials (great<br>Trip Blank Present?<br>Trip Blank Custody Seals Prese                                           |                                                                       | Yes<br>Yes                 |                 | XN/A         | 14.                                       |                        | -1.1 -1 -1 -1 -               |                           | . AIA                                                            |                 |                            |
|                                                                                                                                  | ION/RESOLUTION                                                        | Yes                        | <u>No</u>       | XN/A         | Date/Tim                                  |                        | nk Lot # (if p<br>Fiel        |                           |                                                                  | Yes [           | ]No                        |
| Project Manager R<br>Note: Whenever there is a discre                                                                            |                                                                       | Rud                        | )aid            | S a convic   | of this form w                            | Date:                  | 8-20-19                       | -h Coroli                 |                                                                  | instics Of      | Biop / i.et. (             |
| nold, incorrect preservative, out                                                                                                | of temp, incorrect container                                          | s).                        |                 | ο, α τοργ τ  | si tina loffii W                          |                        | beled by:                     |                           |                                                                  | ication Of      | nce ( 4.e. out of          |



> Tel: 612-607-1700 Fax: 612-607-6444

# **Reporting Flags**

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interferencepresent
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %DExceeds limits
- Y = Calculated using average of daily RFs
- \* = SeeDiscussion

# REPORTOFLABORATORYANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10488182\_1613FC\_DFR

# Appendix B

Sample Analysis Summary

Pace Analytical<sup>™</sup>

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

### Method 1613B Sample Analysis Results

Client - Phoenix Environmental Laboratories

| Client's Sample ID<br>Lab Sample ID<br>Filename<br>Injected By<br>Total Amount Extracted<br>% Moisture<br>Dry Weight Extracted<br>ICAL ID<br>CCal Filename(s)<br>Method Blank ID | 1048<br>U19<br>BAL<br>504<br>NA<br>NA<br>U19<br>U19 |              |                      | Dilution<br>Collected<br>Received<br>Extracted                   | Water<br>NA<br>08/14/201<br>08/20/201<br>08/22/201<br>08/24/201 | 9 09:10<br>9 10:55           |                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|----------------------|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------------|
| Native<br>Isomers                                                                                                                                                                | Conc<br>pg/L                                        | EMPC<br>pg/L | <b>RL</b><br>pg/L    | Internal<br>Standards                                            |                                                                 | ng's<br>Added                | Percent<br>Recovery |
| 2,3,7,8-TCDF<br>Total TCDF                                                                                                                                                       | ND<br>ND                                            |              | 10<br>10             | 2,3,7,8-TCDF-13C<br>2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13       | IC.                                                             | 2.00<br>2.00<br>2.00         | 77<br>80<br>81      |
| 2,3,7,8-TCDD<br>Total TCDD                                                                                                                                                       | ND<br>ND                                            |              | 10<br>10             | 2,3,4,7,8-PeCDF-13<br>1,2,3,7,8-PeCDD-13<br>1,2,3,4,7,8-HxCDF-   | SC<br>SC                                                        | 2.00<br>2.00<br>2.00<br>2.00 | 79<br>83<br>66      |
| 1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>Total PeCDF                                                                                                                                | ND<br>ND<br>ND                                      |              | 50<br>50<br>50       | 1,2,3,6,7,8-HxCDF-<br>2,3,4,6,7,8-HxCDF-<br>1,2,3,7,8,9-HxCDF-   | 13C<br>13C                                                      | 2.00<br>2.00<br>2.00<br>2.00 | 70<br>71<br>76      |
| 1,2,3,7,8-PeCDD<br>Total PeCDD                                                                                                                                                   | ND<br>ND                                            |              | 50<br>50             | 1,2,3,4,7,8-HxCDD-<br>1,2,3,6,7,8-HxCDD-<br>1,2,3,4,6,7,8-HpCDF  | 13C<br>13C                                                      | 2.00<br>2.00<br>2.00         | 60<br>61<br>56      |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                                                                                                                                           | ND<br>ND                                            |              | 50<br>50             | 1,2,3,4,7,8,9-HpCDF<br>1,2,3,4,6,7,8-HpCDE<br>OCDD-13C           |                                                                 | 2.00<br>2.00<br>4.00         | 65<br>65<br>52      |
| 2,3,4,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>Total HxCDF                                                                                                                            | ND<br>ND<br>ND                                      | <br>         | 50<br>50<br>50       | 1,2,3,4-TCDD-13C<br>1,2,3,7,8,9-HxCDD-                           | 13C                                                             | 2.00<br>2.00                 | NA<br>NA            |
| 1,2,3,4,7,8-HxCDD<br>1,2,3,6,7,8-HxCDD<br>1,2,3,7,8,9-HxCDD<br>Total HxCDD                                                                                                       | ND<br>ND<br>ND<br>ND                                | <br><br>     | 50<br>50<br>50<br>50 | 2,3,7,8-TCDD-37Cl4                                               | Ļ                                                               | 0.20                         | 86                  |
| 1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,7,8,9-HpCDF<br>Total HpCDF                                                                                                                        | ND<br>ND<br>ND                                      | <br>         | 50<br>50<br>50       | Total 2,3,7,8-TCDD<br>Equivalence: 0.00 p<br>(Lower-bound - Usir | g/L                                                             | P Factors)                   |                     |
| 1,2,3,4,6,7,8-HpCDD<br>Total HpCDD                                                                                                                                               | ND<br>ND                                            |              | 50<br>50             |                                                                  |                                                                 |                              |                     |
| OCDF<br>OCDD                                                                                                                                                                     | ND<br>ND                                            |              | 100<br>100           |                                                                  |                                                                 |                              |                     |

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

ND = Not DetectedNA = Not Applicable

NC = Not Calculated

# REPORTOFLABORATORYANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10488182\_1613FC\_DFR

Page 9 of 13



> Tel: 612-607-1700 Fax: 612-607-6444

#### Method 1613B Blank Analysis Results

| Lab Sample Name<br>Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL ID<br>CCal Filename(s) | D BLANK-72884<br>U190824A_11<br>t Extracted 1030 mL<br>U190730 |             | Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By | Water<br>NA<br>08/22/2019 10:<br>08/24/2019 13:<br>BAL |       |          |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|------------------------------------------------------------|--------------------------------------------------------|-------|----------|
| Native                                                                                                | <b>Conc</b>                                                    | <b>EMPC</b> | <b>RL</b>                                                  | Internal                                               | ng's  | Percent  |
| Isomers                                                                                               | pg/L                                                           | pg/L        | pg/L                                                       | Standards                                              | Added | Recovery |

| Isomers             | pg/L | pg/L | pg/L | Standards                 | Added       | Recovery |
|---------------------|------|------|------|---------------------------|-------------|----------|
| 2,3,7,8-TCDF        | ND   |      | 10   | 2,3,7,8-TCDF-13C          | 2.00        | 83       |
| Total TCDF          | ND   |      | 10   | 2,3,7,8-TCDD-13C          | 2.00        | 86       |
|                     |      |      |      | 1,2,3,7,8-PeCDF-13C       | 2.00        | 88       |
| 2,3,7,8-TCDD        | ND   |      | 10   | 2,3,4,7,8-PeCDF-13C       | 2.00        | 85       |
| Total TCDD          | ND   |      | 10   | 1,2,3,7,8-PeCDD-13C       | 2.00        | 96       |
|                     |      |      |      | 1,2,3,4,7,8-HxCDF-13C     | 2.00        | 70       |
| 1,2,3,7,8-PeCDF     | ND   |      | 50   | 1,2,3,6,7,8-HxCDF-13C     | 2.00        | 72       |
| 2,3,4,7,8-PeCDF     | ND   |      | 50   | 2,3,4,6,7,8-HxCDF-13C     | 2.00        | 75       |
| Total PeCDF         | ND   |      | 50   | 1,2,3,7,8,9-HxCDF-13C     | 2.00        | 82       |
|                     |      |      |      | 1,2,3,4,7,8-HxCDD-13C     | 2.00        | 70       |
| 1,2,3,7,8-PeCDD     | ND   |      | 50   | 1,2,3,6,7,8-HxCDD-13C     | 2.00        | 65       |
| Total PeCDD         | ND   |      | 50   | 1,2,3,4,6,7,8-HpCDF-13C   | 2.00        | 62       |
|                     |      |      |      | 1,2,3,4,7,8,9-HpCDF-13C   | 2.00        | 67       |
| 1,2,3,4,7,8-HxCDF   | ND   |      | 50   | 1,2,3,4,6,7,8-HpCDD-13C   | 2.00        | 72       |
| 1,2,3,6,7,8-HxCDF   | ND   |      | 50   | OCDD-13C                  | 4.00        | 59       |
| 2,3,4,6,7,8-HxCDF   | ND   |      | 50   |                           |             |          |
| 1,2,3,7,8,9-HxCDF   | ND   |      | 50   | 1,2,3,4-TCDD-13C          | 2.00        | NA       |
| Total HxCDF         | ND   |      | 50   | 1,2,3,7,8,9-HxCDD-13C     | 2.00        | NA       |
| 1,2,3,4,7,8-HxCDD   | ND   |      | 50   | 2.3.7.8-TCDD-37Cl4        | 0.20        | 97       |
| 1,2,3,6,7,8-HxCDD   | ND   |      | 50   |                           |             |          |
| 1,2,3,7,8,9-HxCDD   | ND   |      | 50   |                           |             |          |
| Total HxCDD         | ND   |      | 50   |                           |             |          |
| 1,2,3,4,6,7,8-HpCDF | ND   |      | 50   | Total 2,3,7,8-TCDD        |             |          |
| 1,2,3,4,7,8,9-HpCDF | ND   |      | 50   | Equivalence: 0.00 pg/L    |             |          |
| Total HpCDF         | ND   |      | 50   | (Lower-bound - Using MADE | EP Factors) |          |
|                     |      |      |      | (                         | ,           |          |
| 1,2,3,4,6,7,8-HpCDD | ND   |      | 50   |                           |             |          |
| Total HpCDD         | ND   |      | 50   |                           |             |          |
| OCDF                | ND   |      | 100  |                           |             |          |
| OCDD                | ND   |      | 100  |                           |             |          |
|                     |      |      |      |                           |             |          |

Conc=Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

## REPORTOFLABORATORYANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10488182\_1613FC\_DFR

Page 10 of 13



> Tel: 612-607-1700 Fax: 612-607-6444

### Method 1613B Laboratory Control Spike Results

| Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL ID<br>CCal Filename<br>Method Blank ID                                                                                                                                                                                                                                                                                                                                                       | LCS-72885<br>U190824A_12<br>1040 mL<br>U190730<br>U190823B_17<br>BLANK-72884     |                                                                                                       | Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                                                                                          | 08/24/20                                                                                                                                                                            | 019 10:55<br>019 14:07                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cs                                                                               | Cr                                                                                                    | Lower<br>Limit                                                                                                                                      | Upper<br>Limit                                                                                                                                                                      | %<br>Rec.                                                                                                                  |
| 2,3,7,8-TCDF<br>2,3,7,8-TCDD<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,4,7,8-PeCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,4,6,7,8-HxCDD<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,6,7,8-HxCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDD<br>OCDF<br>OCDD                                                                                                                    | 10<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.4<br>11<br>48<br>47<br>46<br>49<br>46<br>47<br>45<br>50<br>54<br>55<br>51<br>46<br>45<br>110<br>100 | $\begin{array}{c} 7.5\\ 6.7\\ 40.0\\ 34.0\\ 35.0\\ 36.0\\ 42.0\\ 35.0\\ 39.0\\ 35.0\\ 38.0\\ 32.0\\ 41.0\\ 39.0\\ 35.0\\ 63.0\\ 78.0\\ \end{array}$ | 15.8<br>15.8<br>67.0<br>80.0<br>71.0<br>65.0<br>78.0<br>65.0<br>82.0<br>67.0<br>81.0<br>61.0<br>69.0<br>70.0<br>170.0<br>144.0                                                      | 94<br>106<br>96<br>95<br>91<br>97<br>93<br>94<br>91<br>100<br>108<br>111<br>101<br>92<br>89<br>109<br>101                  |
| 2,3,7,8-TCDD-37Cl4<br>2,3,7,8-TCDF-13C<br>1,2,3,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C<br>1,2,3,6,7,8-HxCDF-13C<br>1,2,3,4,6,7,8-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,7,8-HxCDF-13C<br>1,2,3,4,7,8-HpCDF-13C<br>1,2,3,4,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C | 10<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                | 9.2<br>79<br>78<br>79<br>85<br>69<br>73<br>73<br>73<br>73<br>65<br>65<br>61<br>69<br>68<br>110        | $\begin{array}{c} 3.1\\ 22.0\\ 20.0\\ 21.0\\ 13.0\\ 21.0\\ 19.0\\ 21.0\\ 22.0\\ 17.0\\ 21.0\\ 25.0\\ 21.0\\ 20.0\\ 26.0\\ 26.0\\ 26.0\end{array}$   | $\begin{array}{c} 19.1 \\ 152.0 \\ 175.0 \\ 192.0 \\ 328.0 \\ 227.0 \\ 202.0 \\ 159.0 \\ 176.0 \\ 205.0 \\ 193.0 \\ 163.0 \\ 163.0 \\ 186.0 \\ 186.0 \\ 166.0 \\ 397.0 \end{array}$ | 92<br>79<br>79<br>78<br>79<br>85<br>69<br>73<br>73<br>73<br>73<br>73<br>78<br>65<br>65<br>61<br>65<br>61<br>69<br>68<br>56 |

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

\*=SeeDiscussion

## **REPORTOFLABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10488182\_1613FC\_DFR

Page 11 of 13



> Tel: 612-607-1700 Fax: 612-607-6444

### Method 1613B Laboratory Control Spike Results

| Lab Sample ID<br>Filename<br>Total Amount Extracted<br>ICAL ID<br>CCal Filename<br>Method Blank ID                                                                                                                                                                                                                                                                                                                           | LCSD-72886<br>U190824A_13<br>1050 mL<br>U190730<br>U190823B_17<br>BLANK-72884    |                                                                                                  | Matrix<br>Dilution<br>Extracted<br>Analyzed<br>Injected By                                                                                                      | Water<br>NA<br>08/22/2019<br>08/24/2019<br>BAL                                                                                              |                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Compound                                                                                                                                                                                                                                                                                                                                                                                                                     | Cs                                                                               | Cr                                                                                               | Lower<br>Limit                                                                                                                                                  | Upper<br>Limit                                                                                                                              | %<br>Rec.                                                                                                 |
| 2,3,7,8-TCDF<br>2,3,7,8-TCDD<br>1,2,3,7,8-PeCDF<br>2,3,4,7,8-PeCDF<br>1,2,3,7,8-PeCDD<br>1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF<br>1,2,3,7,8,9-HxCDF<br>1,2,3,4,7,8-HxCDD<br>1,2,3,4,6,7,8-HxCDD<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDF<br>1,2,3,4,6,7,8-HpCDD<br>OCDF<br>OCDD                                                                                            | 10<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.5<br>9.9<br>47<br>45<br>50<br>49<br>48<br>46<br>51<br>57<br>58<br>53<br>48<br>44<br>120<br>100 | $\begin{array}{c} 7.5\\ 6.7\\ 40.0\\ 34.0\\ 35.0\\ 36.0\\ 42.0\\ 35.0\\ 39.0\\ 35.0\\ 39.0\\ 35.0\\ 38.0\\ 32.0\\ 41.0\\ 39.0\\ 35.0\\ 63.0\\ 78.0 \end{array}$ | 15.8<br>15.8<br>67.0<br>80.0<br>71.0<br>67.0<br>65.0<br>78.0<br>65.0<br>82.0<br>67.0<br>81.0<br>61.0<br>69.0<br>70.0<br>170.0<br>144.0      | 95<br>99<br>93<br>94<br>91<br>100<br>98<br>95<br>92<br>101<br>114<br>116<br>106<br>96<br>87<br>118<br>104 |
| 2,3,7,8-TCDD-37Cl4<br>2,3,7,8-TCDF-13C<br>1,2,3,7,8-TCDD-13C<br>1,2,3,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDF-13C<br>1,2,3,7,8-PeCDD-13C<br>1,2,3,4,7,8-HxCDF-13C<br>1,2,3,6,7,8-HxCDF-13C<br>1,2,3,4,6,7,8-HxCDF-13C<br>1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,7,8-HxCDD-13C<br>1,2,3,4,7,8-HpCDF-13C<br>1,2,3,4,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C<br>1,2,3,4,6,7,8-HpCDF-13C | $ \begin{array}{c} 10\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\ 100\\$               | 9.6<br>91<br>92<br>91<br>90<br>98<br>77<br>78<br>83<br>91<br>77<br>71<br>67<br>77<br>79<br>120   | $\begin{array}{c} 3.1\\ 22.0\\ 20.0\\ 21.0\\ 13.0\\ 21.0\\ 19.0\\ 21.0\\ 22.0\\ 17.0\\ 21.0\\ 25.0\\ 21.0\\ 25.0\\ 21.0\\ 20.0\\ 26.0\\ 26.0\end{array}$        | 19.1<br>152.0<br>175.0<br>228.0<br>227.0<br>202.0<br>159.0<br>176.0<br>205.0<br>193.0<br>163.0<br>163.0<br>166.0<br>186.0<br>186.0<br>397.0 | 96<br>91<br>92<br>91<br>90<br>98<br>77<br>78<br>83<br>91<br>77<br>71<br>67<br>77<br>79<br>61              |

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

\*=SeeDiscussion

## **REPORTOFLABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10488182\_1613FC\_DFR

Page 12 of 13



> Tel: 612-607-1700 Fax: 612-607-6444

#### Method 1613B

#### Spike Recovery Relative Percent Difference (RPD) Results

| Client                                                                                                                                                                                                                  | Phoenix Environm                                   | nental Labor                                                       | atories                                                                  |                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Spike 1 ID<br>Spike 1 Filename                                                                                                                                                                                          | LCS-72885<br>U190824A_12                           |                                                                    | Spike 2 ID<br>Spike 2 Filename                                           | LCSD-72886<br>U190824A_13                                                        |  |
| Compound                                                                                                                                                                                                                |                                                    | Spike 1<br>%REC                                                    | Spike 2<br>%REC                                                          | %RPD                                                                             |  |
| 2,3,7,8-TCDF<br>2,3,7,8-TCDD<br>1,2,3,7,8-PeCD<br>2,3,4,7,8-PeCD<br>1,2,3,7,8-PeCD<br>1,2,3,4,7,8-HxC<br>1,2,3,6,7,8-HxC<br>1,2,3,4,7,8-HxC<br>1,2,3,4,7,8-HxC<br>1,2,3,6,7,8-HxC<br>1,2,3,6,7,8-HxC<br>1,2,3,7,8,9-HxC | DF<br>DD<br>DDF<br>DDF<br>DDF<br>DDF<br>DDD<br>DDD | 94<br>106<br>95<br>91<br>97<br>93<br>94<br>91<br>100<br>108<br>111 | 95<br>99<br>93<br>94<br>91<br>100<br>98<br>95<br>92<br>101<br>114<br>116 | 1.1<br>6.8<br>3.2<br>1.1<br>0.0<br>3.0<br>5.2<br>1.1<br>1.1<br>1.0<br>5.4<br>4.4 |  |
| 1,2,3,4,6,7,8-H<br>1,2,3,4,7,8,9-H<br>1,2,3,4,6,7,8-H<br>1,2,3,4,6,7,8-H<br>OCDF<br>OCDD                                                                                                                                | pCDF<br>pCDF                                       | 101<br>92<br>89<br>109<br>101                                      | 106<br>96<br>87<br>118<br>104                                            | 4.8<br>4.3<br>2.3<br>7.9<br>2.9                                                  |  |

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

## REPORTOFLABORATORYANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10488182\_1613FC\_DFR